TY - JOUR
T1 - Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics
AU - Kirillov, Oleg
PY - 2017/9/13
Y1 - 2017/9/13
N2 - We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. In the presence of the magnetic field the hydrodynamically stable flow can demonstrate non - axisymmetric azimuthal magnetorotational instability (AMRI) both in the diffusionless case and in the double-diffusive case with viscous and ohmic dissipation. Performing stability analysis of amplitude transport equations of short-wavelength approximation, we find that the threshold of the diffusionless AMRI via the Hamilton-Hopf bifurcation is a singular limit of the thresholds of the viscous and resistive AMRI corresponding to the dissipative Hopf bifurcation and manifests itself as the Whitney umbrella singular point. A smooth transition between the two types of instabilities is possible only if the magnetic Prandtl number is equal to unity, Pm =1. At a fixed Pm <1 or Pm >1 the threshold of the double-diffusive AMRI is displaced by finite distance in the parameter space with respect to the diffusionless case even in the zero dissipation limit. The complete neutral stability surface contains three Whitney umbrella singular points and two mutually orthogonal intervals of self-intersection. At these singularities the double-diffusive system reduces to a marginally stable system which is either Hamiltonian or parity-time (PT) symmetric.
AB - We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. In the presence of the magnetic field the hydrodynamically stable flow can demonstrate non - axisymmetric azimuthal magnetorotational instability (AMRI) both in the diffusionless case and in the double-diffusive case with viscous and ohmic dissipation. Performing stability analysis of amplitude transport equations of short-wavelength approximation, we find that the threshold of the diffusionless AMRI via the Hamilton-Hopf bifurcation is a singular limit of the thresholds of the viscous and resistive AMRI corresponding to the dissipative Hopf bifurcation and manifests itself as the Whitney umbrella singular point. A smooth transition between the two types of instabilities is possible only if the magnetic Prandtl number is equal to unity, Pm =1. At a fixed Pm <1 or Pm >1 the threshold of the double-diffusive AMRI is displaced by finite distance in the parameter space with respect to the diffusionless case even in the zero dissipation limit. The complete neutral stability surface contains three Whitney umbrella singular points and two mutually orthogonal intervals of self-intersection. At these singularities the double-diffusive system reduces to a marginally stable system which is either Hamiltonian or parity-time (PT) symmetric.
KW - Hamiltonian system
KW - energy equipartition
KW - double diffusion
KW - magnetorotational instability
KW - dissipation-induced instabilities
KW - exceptional point
UR - https://arxiv.org/abs/1610.06970
UR - https://www.scopus.com/pages/publications/85033797719
U2 - 10.1098/rspa.2017.0344
DO - 10.1098/rspa.2017.0344
M3 - Article
SN - 1364-5021
SN - 1471-2946
VL - 473
JO - Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences
IS - 2205
M1 - 344
ER -