TY - JOUR
T1 - Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides
AU - Dong, L.l.
AU - Xiao, B.
AU - Liu, Y.
AU - Li, Y.l.
AU - Fu, Y.q.
AU - Zhao, Y.q.
AU - Zhang, Y.s.
PY - 2018/10/15
Y1 - 2018/10/15
N2 - Ti matrix composites reinforced with 0.6 wt% reduced graphene oxide (rGO) sheets were fabricated using spark plasma sintering (SPS) technology at different sintering temperatures from 800 °C to 1100 °C. Effects of SPS sintering temperature on microstructural evolution and mechanical properties of rGO/Ti composites were studied. Results showed that with an increase in the sintering temperature, the relative density and densification of the composites were improved. The Ti grains were apparently refined owing to the presence of rGO. The optimum sintering temperature was found to be 1000 °C with a duration of 5 min under a pressure of 45 MPa in vacuum, and the structure of rGO was retained. At the same time, the reaction between Ti matrix and rGO at such high sintering temperatures resulted in uniform distribution of micro/nano TiC particle inside the rGO/Ti composites. The sintered rGO/Ti composites exhibited the best mechanical properties at the sintering temperature of 1000 °C, obtaining the values of micro-hardness, ultimate tensile strength, 0.2% yield strength of 224 HV, 535 MPa and 446 MPa, respectively. These are much higher than the composites sintered at the temperature of 900 °C. The fracture mode of the composites was found to change from a predominate trans-granular mode at low sintering temperatures to a ductile fracture mode with quasi-cleavage at higher temperatures, which is consistent with the theoretical calculations.
AB - Ti matrix composites reinforced with 0.6 wt% reduced graphene oxide (rGO) sheets were fabricated using spark plasma sintering (SPS) technology at different sintering temperatures from 800 °C to 1100 °C. Effects of SPS sintering temperature on microstructural evolution and mechanical properties of rGO/Ti composites were studied. Results showed that with an increase in the sintering temperature, the relative density and densification of the composites were improved. The Ti grains were apparently refined owing to the presence of rGO. The optimum sintering temperature was found to be 1000 °C with a duration of 5 min under a pressure of 45 MPa in vacuum, and the structure of rGO was retained. At the same time, the reaction between Ti matrix and rGO at such high sintering temperatures resulted in uniform distribution of micro/nano TiC particle inside the rGO/Ti composites. The sintered rGO/Ti composites exhibited the best mechanical properties at the sintering temperature of 1000 °C, obtaining the values of micro-hardness, ultimate tensile strength, 0.2% yield strength of 224 HV, 535 MPa and 446 MPa, respectively. These are much higher than the composites sintered at the temperature of 900 °C. The fracture mode of the composites was found to change from a predominate trans-granular mode at low sintering temperatures to a ductile fracture mode with quasi-cleavage at higher temperatures, which is consistent with the theoretical calculations.
KW - Spark plasma sintering
KW - Reduced graphene oxide
KW - Ti matrix composites
KW - Mechanical properties
KW - Microstructure
U2 - 10.1016/j.ceramint.2018.06.252
DO - 10.1016/j.ceramint.2018.06.252
M3 - Article
VL - 44
SP - 17835
EP - 17844
JO - Ceramics International
JF - Ceramics International
SN - 0272-8842
IS - 15
ER -