TY - JOUR
T1 - Skeletal muscle fiber type and TMS-induced muscle relaxation in unfatigued and fatigued knee-extensor muscles
AU - Barbi, Chiara
AU - Temesi, John
AU - Giuriato, Gaia
AU - Laginestra, Fabio Giuseppe
AU - Martignon, Camilla
AU - Moro, Tatiana
AU - Schena, Federico
AU - Venturelli, Massimo
AU - Vernillo, Gianluca
PY - 2024/5/1
Y1 - 2024/5/1
N2 - The force drop after transcranial magnetic stimulation (TMS) delivered to the motor cortex during voluntary muscle contractions could inform about muscle relaxation properties. Because of the physiological relation between skeletal muscle fiber type distribution and size and muscle relaxation, TMS could be a non-invasive index of muscle relaxation in humans. By combining a non-invasive technique to record muscle relaxation in vivo (TMS) with the gold standard technique for muscle tissue sampling (muscle biopsy), we investigated the relation between TMS-induced muscle relaxation in unfatigued and fatigued states, and muscle fiber type distribution and size. Sixteen participants (7F/9M) volunteered to participate. Maximal knee-extensor voluntary isometric contractions were performed with TMS before and after a 2-min sustained maximal voluntary isometric contraction. Vastus lateralis muscle tissue was obtained separately from the participants' dominant limb. Fiber type I distribution and relative cross-sectional area of fiber type I correlated with TMS-induced muscle relaxation at baseline [r = 0.67, adjusted P = 0.01; r = 0.74, adjusted P = 0.004, respectively] and normalized TMS-induced muscle relaxation as a percentage of baseline [r = 0.50, adjusted P = 0.049; r = 0.56, adjusted P = 0.031, respectively]. The variance in the normalized peak relaxation rate at baseline (59.8%, P < 0.001) and in the fatigue resistance (23.0%, P = 0.035) were explained by the relative cross-sectional area of fiber type I to total fiber area. Fiber type I proportional area influences TMS-induced muscle relaxation, suggesting TMS as an alternative method to non-invasively inform about skeletal muscle relaxation properties.
AB - The force drop after transcranial magnetic stimulation (TMS) delivered to the motor cortex during voluntary muscle contractions could inform about muscle relaxation properties. Because of the physiological relation between skeletal muscle fiber type distribution and size and muscle relaxation, TMS could be a non-invasive index of muscle relaxation in humans. By combining a non-invasive technique to record muscle relaxation in vivo (TMS) with the gold standard technique for muscle tissue sampling (muscle biopsy), we investigated the relation between TMS-induced muscle relaxation in unfatigued and fatigued states, and muscle fiber type distribution and size. Sixteen participants (7F/9M) volunteered to participate. Maximal knee-extensor voluntary isometric contractions were performed with TMS before and after a 2-min sustained maximal voluntary isometric contraction. Vastus lateralis muscle tissue was obtained separately from the participants' dominant limb. Fiber type I distribution and relative cross-sectional area of fiber type I correlated with TMS-induced muscle relaxation at baseline [r = 0.67, adjusted P = 0.01; r = 0.74, adjusted P = 0.004, respectively] and normalized TMS-induced muscle relaxation as a percentage of baseline [r = 0.50, adjusted P = 0.049; r = 0.56, adjusted P = 0.031, respectively]. The variance in the normalized peak relaxation rate at baseline (59.8%, P < 0.001) and in the fatigue resistance (23.0%, P = 0.035) were explained by the relative cross-sectional area of fiber type I to total fiber area. Fiber type I proportional area influences TMS-induced muscle relaxation, suggesting TMS as an alternative method to non-invasively inform about skeletal muscle relaxation properties.
KW - fatigue
KW - knee extensors
KW - muscle fiber type composition
KW - transcranial magnetic stimulation
KW - muscle relaxation rate
U2 - 10.1152/ajpregu.00174.2023
DO - 10.1152/ajpregu.00174.2023
M3 - Article
SN - 0363-6119
VL - 326
SP - R438-R447
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 5
ER -