TY - JOUR
T1 - Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling
AU - Rutter, Nick
AU - Sandells, Mel
AU - Derksen, Chris
AU - Toose, Peter
AU - Royer, Alain
AU - Montpetit, Benoit
AU - Lemmetyinen, Juha
AU - Pulliainen, Jouni
PY - 2014/3
Y1 - 2014/3
N2 - Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.
AB - Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.
KW - snow
KW - remote sensing
KW - emission modeling
U2 - 10.1002/2013JF003017
DO - 10.1002/2013JF003017
M3 - Article
SN - 2169-9011
VL - 119
SP - 550
EP - 565
JO - Journal of Geophysical Research: Earth Surface
JF - Journal of Geophysical Research: Earth Surface
IS - 3
ER -