TY - JOUR
T1 - SPATA: Strong Pseudonym based AuthenTicAtion in Intelligent Transport System
AU - Ali, Qazi
AU - Ahmad, Naveed
AU - Malik, Abdul
AU - Ali, Gauhar
AU - Asif, Muhammad
AU - Khalid, Muhammad
AU - Cao, Yue
PY - 2018/11/23
Y1 - 2018/11/23
N2 - Intelligent Transport System (ITS) is generally deployed to improve road safety, comfort, security, and traffic efficiency. A robust mechanism of authentication and secure communication is required to protect privacy and conditional resolution of pseudonyms to revoke malicious vehicles. In a typical ITS framework, a station can be a vehicle, Road Side Unit (RSU), or a server that can participate in communication. During authentication, the real identity of an Intelligent Transport System-Station (ITSS), referred to as a vehiclecˇn should not be revealed in order to preserve its privacy. In this paper, we ˇ propose a Strong Pseudonym based AutenTicAtion (SPATA) framework for preserving the real identity of vehicles. The distributed architecture of SPATA allows vehicles to generate pseudonyms in a very private and secure way. In the absence of a distributed architecture, the privacy cannot be preserved by storing information regarding vehicles in a single location. Therefore, the concept of linkability of certificates based on single authority is eliminated. This is done by keeping the real identity to pseudonym mappings distributed. Furthermore, the size of the Certificate Revocation List (CRL) is kept small, as only the most recent revoked communication pseudonyms are kept in the CRL. The privacy of the vehicle is preserved during the revocation and resolution phase through the distributed mechanism. Empirical results show that SPATA is a lightweight framework with low computational overhead, average latency, overhead ratio, and stable delivery ratio, in both sparse and dense network scenarios.
AB - Intelligent Transport System (ITS) is generally deployed to improve road safety, comfort, security, and traffic efficiency. A robust mechanism of authentication and secure communication is required to protect privacy and conditional resolution of pseudonyms to revoke malicious vehicles. In a typical ITS framework, a station can be a vehicle, Road Side Unit (RSU), or a server that can participate in communication. During authentication, the real identity of an Intelligent Transport System-Station (ITSS), referred to as a vehiclecˇn should not be revealed in order to preserve its privacy. In this paper, we ˇ propose a Strong Pseudonym based AutenTicAtion (SPATA) framework for preserving the real identity of vehicles. The distributed architecture of SPATA allows vehicles to generate pseudonyms in a very private and secure way. In the absence of a distributed architecture, the privacy cannot be preserved by storing information regarding vehicles in a single location. Therefore, the concept of linkability of certificates based on single authority is eliminated. This is done by keeping the real identity to pseudonym mappings distributed. Furthermore, the size of the Certificate Revocation List (CRL) is kept small, as only the most recent revoked communication pseudonyms are kept in the CRL. The privacy of the vehicle is preserved during the revocation and resolution phase through the distributed mechanism. Empirical results show that SPATA is a lightweight framework with low computational overhead, average latency, overhead ratio, and stable delivery ratio, in both sparse and dense network scenarios.
U2 - 10.1109/ACCESS.2018.2883134
DO - 10.1109/ACCESS.2018.2883134
M3 - Article
SN - 2169-3536
VL - 6
SP - 79114
EP - 79128
JO - IEEE Access
JF - IEEE Access
ER -