Abstract
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with an Attentive Long Short-Term Memory (LSTM) network to enhance forecasting performance in renewable-integrated smart grids. The CNN component captures spatial dependencies from multivariate inputs, comprising meteorological variables and generation data, while the LSTM module models temporal correlations in historical load patterns. An embedded attention mechanism dynamically weights input sequences, enabling the model to prioritise the most influential time steps, thereby improving its interpretability and robustness during demand fluctuations. ST-CALNet was trained and evaluated using real-world datasets that include electricity consumption, solar photovoltaic (PV) output, and wind generation. Experimental evaluation demonstrated that the model achieved a mean absolute error (MAE) of 0.0494, root mean squared error (RMSE) of 0.0832, and a coefficient of determination (R2) of 0.4376 for electricity demand forecasting. For PV and wind generation, the model attained MAE values of 0.0134 and 0.0141, respectively. Comparative analysis against baseline models confirmed ST-CALNet’s superior predictive accuracy, particularly in minimising absolute and percentage-based errors. Temporal and regime-based error analysis validated the model’s resilience under high-variability conditions such as peak load periods, while visualisation of attention scores offered insights into the model’s temporal focus. These findings underscore the potential of ST-CALNet for deployment in intelligent energy systems, supporting more adaptive, transparent, and dependable forecasting within smart grid infrastructures.
Original language | English |
---|---|
Article number | 2514 |
Number of pages | 24 |
Journal | Electronics |
Volume | 14 |
Issue number | 13 |
DOIs | |
Publication status | Published - 20 Jun 2025 |
Keywords
- time-series forecasting
- deep learning
- energy demand prediction
- attention mechanism
- CNN-LSTM
- renewable energy integration
- smart grids
- spatio-temporal deep learning
- short-term load forecasting