TY - JOUR
T1 - Stable isotope ratios of typhoon rains in Fuzhou, Southeast China, during 2013–2017
AU - Xu, Tao
AU - Sun, Xiaoshuang
AU - Hong, Hui
AU - Wang, Xiaoyan
AU - Cui, Mengyue
AU - Lei, Guoliang
AU - Gao, Lu
AU - Liu, Juan
AU - Lone, Mahjoor Ahmad
AU - Jiang, Xiuyang
N1 - Funding information: This study was jointly supported by grants of the National Key Research and Development Program of China (2017YFA0603401), the National Natural Science Foundation of China (41672170), the Program for New Century Excellent Talents in Fujian Province University, the Program for Innovative Research Team of Fujian Normal University (IRTL1705), and the Guangzhou University’s 2017 training program for young top-notch personnel (BJ201709).
PY - 2019/3/1
Y1 - 2019/3/1
N2 - Stable isotope ratios (δ2H and δ18O) in precipitation not only show a certain response to climate change at different time scales, but also have strong linkages to extreme weather events such as tropical cyclones (hurricanes/typhoons). Typhoon activity in the coastal region of Southeast China is quite intense, bringing huge amounts of moisture; thus, contributing to extreme rainfall in this region. The existing isotope data in Southeast China is available on a monthly or daily temporal resolution, which is inadequate to study 1–2-day-long typhoon rainfall events at a particular location. In this study, hourly rainfall δ2H and δ18O data are collected for eight typhoon events from 2013 to 2017 in Fuzhou, Southeast China. The total correlation between δ2H and δ18O is obtained as δ2H = 7.41 δ18O + 0.81 (R2 = 0.96, N = 220). All the eight typhoon events reveal a similar variability pattern in δ18O values which can be divided into three stages. More positive δ18O values occur in the first and third stages, while the second stage is dominated by most negative δ18O values, exhibiting an inverted U-shaped pattern. The positive δ18O values during the first and third stages are governed by re-evaporation. The precipitation during the second stage has distinctly lower δ18O values than the weighted average δ18O of summer precipitation in Fuzhou. Some of these values are slightly lower than those of the water vapor over the Pacific Ocean’s surface. No significant relationship is observed between precipitation δ18O and temperature as well as the amount of precipitation during the second stage. We hypothesize that the significant 18O-depletion is mainly caused by the ‘rain shield effect’, which refers to combination of large-scale convection, high condensation efficiency, and recycling of isotopically depleted vapor in rain shield areas leading to very negative δ18O values during typhoon system. These findings suggest the use of stable isotope ratios as important tracers of typhoon water.
AB - Stable isotope ratios (δ2H and δ18O) in precipitation not only show a certain response to climate change at different time scales, but also have strong linkages to extreme weather events such as tropical cyclones (hurricanes/typhoons). Typhoon activity in the coastal region of Southeast China is quite intense, bringing huge amounts of moisture; thus, contributing to extreme rainfall in this region. The existing isotope data in Southeast China is available on a monthly or daily temporal resolution, which is inadequate to study 1–2-day-long typhoon rainfall events at a particular location. In this study, hourly rainfall δ2H and δ18O data are collected for eight typhoon events from 2013 to 2017 in Fuzhou, Southeast China. The total correlation between δ2H and δ18O is obtained as δ2H = 7.41 δ18O + 0.81 (R2 = 0.96, N = 220). All the eight typhoon events reveal a similar variability pattern in δ18O values which can be divided into three stages. More positive δ18O values occur in the first and third stages, while the second stage is dominated by most negative δ18O values, exhibiting an inverted U-shaped pattern. The positive δ18O values during the first and third stages are governed by re-evaporation. The precipitation during the second stage has distinctly lower δ18O values than the weighted average δ18O of summer precipitation in Fuzhou. Some of these values are slightly lower than those of the water vapor over the Pacific Ocean’s surface. No significant relationship is observed between precipitation δ18O and temperature as well as the amount of precipitation during the second stage. We hypothesize that the significant 18O-depletion is mainly caused by the ‘rain shield effect’, which refers to combination of large-scale convection, high condensation efficiency, and recycling of isotopically depleted vapor in rain shield areas leading to very negative δ18O values during typhoon system. These findings suggest the use of stable isotope ratios as important tracers of typhoon water.
U2 - 10.1016/j.jhydrol.2019.01.017
DO - 10.1016/j.jhydrol.2019.01.017
M3 - Article
SN - 0022-1694
VL - 570
SP - 445
EP - 453
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -