Statistical and Neural Integration of Data and Text Mining for Supporting Audiology Knowledge Extraction

Research output: Contribution to conferenceOther

Abstract

We are working on the data mining of audiology patient records, looking for factors influencing which patients would most benefit from being fitted with a hearing aid. Various research groups have used statistics and neural networks for integration of data, such as the chi-squared test or self organizing maps (SOMs). This motivates our research into a new architecture which combines neural network and statistical techniques suitable for mining heterogeneous audiology records. Audiology records contain the following three different types of data: 1. Audiograms (graphs of hearing ability at different frequencies) 2. Structured tabular data (gender, date of birth, etc) 3.Unstructured text (specific observations made about each patient in a field for comments/remarks) So far, we have performed clustering of hearing aid patient audiograms with an SOM, and clustering of audiograms using the k-means algorithm to identify 3 main groups of hearing aid wearers.
Original languageEnglish
Publication statusPublished - 23 Oct 2009
EventNorth East Post-Graduate Conference (NEPG) 2009 - Newcastle University
Duration: 23 Oct 2009 → …

Conference

ConferenceNorth East Post-Graduate Conference (NEPG) 2009
Period23/10/09 → …

Fingerprint

Dive into the research topics of 'Statistical and Neural Integration of Data and Text Mining for Supporting Audiology Knowledge Extraction'. Together they form a unique fingerprint.

Cite this