Steering Mirror System with Closed-Loop Feedback for Free-Space Optical Communication Terminals

Chris Graham, David Bramall, Othman Younus, Amna Riaz, Richard Binns, Eamon Scullion, Robert T. Wicks, Cyril Bourgenot

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
70 Downloads (Pure)

Abstract

Precision beam pointing plays a critical role in free-space optical communications terminals in uplink, downlink and inter-satellite link scenarios. Among the various methods of beam steering, the use of fast steering mirrors (FSM) is widely adopted, with many commercial solutions employing diverse technologies, particularly focusing on small, high-bandwidth mirrors. This paper introduces a method using lightweight, commercial off-the-shelf components to construct a custom closed-loop steering mirror platform, suitable for mirror apertures exceeding 100 mm. The approach involves integrating optical encoders into two off-the-shelf open-loop actuators. These encoders read the signal reflected on purposefully diamond-machined knurled screw knobs, providing maximum contrast between light and dark lines. The resulting steering mirror has the potential to complement or replace FSM in applications requiring a larger stroke, at the expense of motion speed. In the presented setup, the mirror tilt resolution achieved based on the encoder closed-loop signal feedback is 45 μrad, with a mean slew rate of 1.5 mrad/s. Importantly, the steering assembly is self-locking, requiring no power to maintain a steady pointing angle. Using the mirror to actively correct for a constantly moving incoming beam, a 5-fold increase in concentration of the beam spot on the center of the detector was obtained compared to a fixed position mirror, demonstrating the mirrors ability to correct for satellite platform jitter and drift.
Original languageEnglish
Article number330
Number of pages12
JournalAerospace
Volume11
Issue number5
DOIs
Publication statusPublished - 23 Apr 2024

Keywords

  • free-space optical communication
  • pointing acquisition tracking
  • tracking
  • acquisition
  • fast steering mirror
  • CubeSat
  • position sensing detector
  • low-earth orbit

Cite this