Structural and mechanical analysis of silane compounds coatings on AISI 304

Akinsanya Damilare Baruwa, Esther Titilayo Akinlabi, O. P. Oladijo, Fredrick Mwema

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


The structures and mechanical strength existing in three different hydrophobic silane compounds, Henicosyl-1,1,2,2-tetrahydrododecyltrichlorosilane (FDDTS), Tridecafloro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and [Tris(trimethylsiloxy)silyethyl]dimethylchlorosilane (Alkyl) under same deposition conditions were studied and presented in this paper. The effect of the chemical composition on the mechanical strength and the structural evolutions as related to chlorosilane was inquired. The structures were investigated by using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and surface profiler while the nature of the mechanical strength was determined from nanoindentation and nano scratch. From the data obtained, the FDDTS showed to be denser in structures than both Alkyl and FOTS. The root-mean-square (RMS) roughness exhibited by FDDTS was larger when compared to the other two silanes. The mechanical ability shows that the FDDTS has the largest maximum penetration load as well as highest scratch resistance. Overall, the FDDTS would perform excellently in the applications where combine hard and wear resistance organic coating is required.

Original languageEnglish
Title of host publicationMechanics of Solids, Structures, and Fluids
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859469
Publication statusPublished - 2019
Externally publishedYes
EventASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019 - Salt Lake City, United States
Duration: 11 Nov 201914 Nov 2019

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)


ConferenceASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Country/TerritoryUnited States
CitySalt Lake City

Cite this