Abstract
The first phase of this work aims to use the right additive nano-fillers choices, such as exfoliated Graphite (ExG), increasing the mechanical, electrical, and thermal performances. In this work, we are interested in quantifying the effect particles' size on a polymer matrix's performance. For this, three sets of exfoliated polymers filled with Graphite, characterized by three particle sizes, called meshes 50, 100, and 150, were investigated. In this analysis, exfoliated Graphite reinforced polymers were subjected to indentation tests to define local mechanical properties. The sample is an epoxy 862 matrix reinforced with exfoliated graphite additives. For each specific size, the additives are mixed in percentages of 0% in the act of control, 0.5%, 4%, 8%, and 16% by weight. Matching pure polymers, polymers reinforced by exfoliated Graphite have proven to have significant improvements in local elastic properties (such as modulus, hardness, stiffness, etc.). Results showed that the reinforced epoxy's local mechanical properties are affected by the size and the percentage of nano-additives. Through the inspection of the load-displacement curve, it can be concluded that the nano-additive has a significant influence on the plastic mechanical properties of the sample. Therefore, the size of nanoparticles has significantly improved in material properties.
Original language | English |
---|---|
Article number | 002199832199321 |
Pages (from-to) | 2617-2629 |
Number of pages | 13 |
Journal | Journal of Composite Materials |
Volume | 55 |
Issue number | 19 |
Early online date | 10 Feb 2021 |
DOIs | |
Publication status | Published - 1 Aug 2021 |
Keywords
- Mechanical Engineering
- Materials Chemistry
- Mechanics of Materials
- Ceramics and Composites
- nanofillers
- indentation
- mechanical proprieties
- Polymer matrix
- exfoliated graphite