Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius

Jose Munoz-Munoz, Didier Ndeh, Pedro Fernandez-Julia, Gemma Walton, Bernard Henrissat, Harry J. Gilbert*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
27 Downloads (Pure)

Abstract

The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific Bacteroides species within the HGM. The data showed that only a single bacterium, B. plebeius, grew on red wine AGP (Wi-AGP) and seaweed AGP (SW-AGP) in mono-or mixed culture. Wi-AGP thus acts as a privileged nutrient for a Bacteroides species within the HGM that utilizes marine and terrestrial plant glycans. The B. plebeius polysaccharide utilization loci (PULs) upregulated by AGPs encoded a polysaccharide lyase, located in the enzyme family GH145, which hydrolyzed Rha-Glc linkages in Wi-AGP. Further analysis of GH145 identified an enzyme with two active sites that displayed glycoside hydrolase and lyase activities, respectively, which conferred substrate flexibility for different AGPs. The AGP-degrading apparatus of B. plebeius also contained a sulfatase, BpS1_8, active on SW-AGP and Wi-AGP, which played a pivotal role in the utilization of these glycans by the bacterium. BpS1_8 enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health.

Original languageEnglish
Article numbere0136821
Number of pages16
JournalmBio
Volume12
Issue number4
Early online date3 Aug 2021
DOIs
Publication statusPublished - 31 Aug 2021

Keywords

  • Bacteroides
  • human microbiota
  • arabinogalactan
  • glycan-degrading enzymes
  • microbial ecology
  • privileged nutrient
  • sulfatases
  • Privileged nutrient
  • Microbial ecology
  • Sulfatases
  • Arabinogalactan
  • Glycan-degrading enzymes
  • Human microbiota
  • Microbiology
  • Virology

Fingerprint

Dive into the research topics of 'Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius'. Together they form a unique fingerprint.

Cite this