Abstract
Achieving both high onset potential and photocurrent in photoelectrodes is a key challenge while performing unassisted overall water splitting using tandem devices. We propose a simple interface modification strategy to maximize the performance of polycrystalline Sb2Se3 photocathodes for photoelectrochemical (PEC) water splitting. The para-aminobenzoic acid (PABA) modification at Sb2Se3/TiO2 interface enhanced both the onset potential and photocurrent of the Sb2Se3 photocathodes. The surface defects in the polycrystalline Sb2Se3 limited the photovoltage production, lowering the onset potential of the photocathode. Surface restoration using the conjugated PABA molecules efficiently passivated the surface defects on the Sb2Se3 and enabled the rapid photoelectron transport from the Sb2Se3 to the TiO2 layer. The PABA treated Sb2Se3 photocathode exhibited substantially improved PEC performance; the onset potential increased from 0.35 to 0.50 V compared to the reversible hydrogen electrode (VRHE), and the photocurrent density increased from 24 to 35 mA cm−2 at 0 VRHE.
Original language | English |
---|---|
Article number | 119890 |
Number of pages | 11 |
Journal | Applied Catalysis B: Environmental |
Volume | 286 |
Early online date | 11 Jan 2021 |
DOIs | |
Publication status | Published - 5 Jun 2021 |
Keywords
- buried junction
- conjugated amino acid
- defect passivation
- onset potential
- photocurrent density