Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice

Ezio Iacocca, Sebastian Gliga, Olle G. Heinonen

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
13 Downloads (Pure)

Abstract

Artificial spin ices are ensembles of geometrically arranged interacting nanomagnets that have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin-ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin-ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin-wave channels in the underlayer at well-defined frequencies, based on the artificial spin-ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures.
Original languageEnglish
Article number044047
JournalPhysical Review Applied
Volume13
Issue number4
DOIs
Publication statusPublished - 17 Apr 2020

Cite this