Abstract
This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni55.5Fe18Ga26.5−xSix alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni—Fe—Ga—Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni55.5Fe18Ga26.5−xSix alloys decrease almost linearly with increasing Si content in the Si content range of x ≤ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga-Si alloy. The valence electronic concentrations, size factor, L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.
Original language | English |
---|---|
Pages (from-to) | 046102 |
Journal | Chinese Physics B |
Volume | 20 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2011 |