Abstract
Stationary waves describe the persistent meanders in the west-east flow of the extratropical atmosphere. Here, changes in stationary waves caused by ice sheets over North America are examined and the underlying mechanisms are discussed. Three experiment sets are presented showing the stationary wave response to the albedo or topography of ice sheets, as well as the albedo and topography in combination, as the forcings evolve from 21 to 6 ka. It is found that although the wintertime stationary waves have the largest amplitude, changes due to an ice sheet are equally large in summer and winter. In summer, ice sheet albedo is the dominant cause of changes: topography alone gives an opposite response to realistic ice sheets including albedo and topography. In winter, over the Atlantic, stationary wave changes are due to the ice sheet topography; over the Pacific, they are due to the persistence of summertime changes, mediated by changes in the ocean circulation. It is found that the response of stationary waves over the last deglaciation echoes the above conclusions, with no evidence of abrupt shifts in atmospheric circulation. The response linearly weakens as the albedo and height decrease from 21 to 10 ka. As potential applications, the seasonal cycle over Greenland is shown to be sensitive primarily to changes in summer climate caused by the stationary waves; the annual mean circulation over the North Pacific is found to result from summertime, albedo-forced, stationary wave effects persisting throughout the year because of ocean dynamics.
Original language | English |
---|---|
Pages (from-to) | 3917-3940 |
Number of pages | 24 |
Journal | Journal of Climate |
Volume | 32 |
Issue number | 13 |
Early online date | 12 Jun 2019 |
DOIs | |
Publication status | Published - 1 Jul 2019 |
Keywords
- Atmosphere
- Ice sheets
- Northern Hemisphere
- Stationary waves
- Topographic effects