TY - JOUR
T1 - The mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue
AU - Veyron-Churlet, Romain
AU - Molle, Virginie
AU - Taylor, Rebecca
AU - Brown, Alistair
AU - Besra, Gurdyal
AU - Zanella-Cleon, Isabelle
AU - Futterer, Klaus
AU - Kremer, Laurent
PY - 2008/12/11
Y1 - 2008/12/11
N2 - Mycolic acids are hallmark features of the Mycobacterium tuberculosis cell wall. They are synthesized by the condensation of two fatty acids, a C56-64-meromycolyl chain and a C24-26-fatty acyl chain. Meromycolates are produced via the combination of type I and type II fatty acid synthases (FAS-I and FAS-II). The ?-ketoacyl-acyl carrier protein (ACP) synthase III (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-ACP. Because mtFabH represents a potential regulatory key point of the mycolic acid pathway, we investigated the hypothesis that phosphorylation of mtFabH controls its activity. Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently emerged as a major physiological mechanism of regulation in prokaryotes. We demonstrate here that mtFabH was efficiently phosphorylated in vitro by several mycobacterial STPKs, particularly by PknF and PknA, as well as in vivo in mycobacteria. Analysis of the phosphoamino acid content indicated that mtFabH was phosphorylated exclusively on threonine residues. Mass spectrometry analyses using liquid chromatography-electrospray ionization/tandem mass spectrometry identified Thr45 as the unique phosphoacceptor. This was further supported by complete loss of PknF- or PknA-dependent phosphorylation of a mtFabH mutant. Mapping Thr45 on the crystal structure of mtFabH illustrates that this residue is located at the entrance of the substrate channel, suggesting that the phosphate group may alter accessibility of the substrate and thus affect mtFabH enzymatic activity. A T45D mutant of mtFabH, designed to mimic constitutive phosphorylation, exhibited markedly decreased transacylation, malonyl-AcpM decarboxylation, and condensing activities compared with the wild-type protein or the T45A mutant. Together, these findings not only represent the first demonstration of phosphorylation of a ?-ketoacyl-ACP synthase III enzyme but also indicate that phosphorylation of mtFabH inhibits its enzymatic activity, which may have important consequences in regulating mycolic acid biosynthesis. Previous SectionNext SectionWithin the infected host, Mycobacterium tuberculosis encounters numerous
AB - Mycolic acids are hallmark features of the Mycobacterium tuberculosis cell wall. They are synthesized by the condensation of two fatty acids, a C56-64-meromycolyl chain and a C24-26-fatty acyl chain. Meromycolates are produced via the combination of type I and type II fatty acid synthases (FAS-I and FAS-II). The ?-ketoacyl-acyl carrier protein (ACP) synthase III (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-ACP. Because mtFabH represents a potential regulatory key point of the mycolic acid pathway, we investigated the hypothesis that phosphorylation of mtFabH controls its activity. Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently emerged as a major physiological mechanism of regulation in prokaryotes. We demonstrate here that mtFabH was efficiently phosphorylated in vitro by several mycobacterial STPKs, particularly by PknF and PknA, as well as in vivo in mycobacteria. Analysis of the phosphoamino acid content indicated that mtFabH was phosphorylated exclusively on threonine residues. Mass spectrometry analyses using liquid chromatography-electrospray ionization/tandem mass spectrometry identified Thr45 as the unique phosphoacceptor. This was further supported by complete loss of PknF- or PknA-dependent phosphorylation of a mtFabH mutant. Mapping Thr45 on the crystal structure of mtFabH illustrates that this residue is located at the entrance of the substrate channel, suggesting that the phosphate group may alter accessibility of the substrate and thus affect mtFabH enzymatic activity. A T45D mutant of mtFabH, designed to mimic constitutive phosphorylation, exhibited markedly decreased transacylation, malonyl-AcpM decarboxylation, and condensing activities compared with the wild-type protein or the T45A mutant. Together, these findings not only represent the first demonstration of phosphorylation of a ?-ketoacyl-ACP synthase III enzyme but also indicate that phosphorylation of mtFabH inhibits its enzymatic activity, which may have important consequences in regulating mycolic acid biosynthesis. Previous SectionNext SectionWithin the infected host, Mycobacterium tuberculosis encounters numerous
U2 - 10.1074/jbc.M806537200
DO - 10.1074/jbc.M806537200
M3 - Article
SN - 0021-9258
SN - 1083-351X
VL - 284
SP - 6414
EP - 6424
JO - The Journal of Biological Chemistry
JF - The Journal of Biological Chemistry
ER -