TY - JOUR
T1 - The relationship between quadriceps angle and tibial tuberosity–trochlear groove distance in patients with patellar instability
AU - Cooney, A. D.
AU - Kazi, Zeeshan
AU - Caplan, Nick
AU - Newby, Mike
AU - St Clair Gibson, Alan
AU - Kader, Deiary
PY - 2012
Y1 - 2012
N2 - Purpose
The quadriceps angle (Q-angle) represents the angle between the vector of action of the quadriceps and the patellar tendon. An increased Q-angle has been associated with an increased risk of patellar instability, although there is disagreement on its reliability and validity as it is affected by the position of the limb and contraction of the quadriceps. Tibial tuberosity–trochlear groove distance (TT–TG) is ascertained by axial CT scanning, with an increased value associated with patellar instability. This study aimed to determine whether the Q-angle correlates with the TT–TG distance in patients with patellar instability.
Methods
Q-angles were measured in 34 knees that had previously undergone CT scanning for assessment of patellar instability. Measurements were made with the patient supine, the knee extended and the lower limbs in neutral rotation with the quadriceps relaxed and contracted. TT–TG distance was measured on CT scanning in an identical position.
Results
Of the 34 knees measured, 24 had symptoms of patellar instability, and 10 were normal. A significant negative correlation between relaxed Q-angle and TT–TG in all knees was demonstrated (p = 0.028). In symptomatic knees, contracted Q-angle also demonstrated a significant negative correlation with TT–TG (p = 0.037).
Conclusions
If TT–TG distance is regarded as the gold standard measurement, Q-angle is not a reliable indicator of patellar instability. There is a clear need to develop methods to more fully characterise the knee and factors contributing to patellar instability.
Level of evidence
II.
AB - Purpose
The quadriceps angle (Q-angle) represents the angle between the vector of action of the quadriceps and the patellar tendon. An increased Q-angle has been associated with an increased risk of patellar instability, although there is disagreement on its reliability and validity as it is affected by the position of the limb and contraction of the quadriceps. Tibial tuberosity–trochlear groove distance (TT–TG) is ascertained by axial CT scanning, with an increased value associated with patellar instability. This study aimed to determine whether the Q-angle correlates with the TT–TG distance in patients with patellar instability.
Methods
Q-angles were measured in 34 knees that had previously undergone CT scanning for assessment of patellar instability. Measurements were made with the patient supine, the knee extended and the lower limbs in neutral rotation with the quadriceps relaxed and contracted. TT–TG distance was measured on CT scanning in an identical position.
Results
Of the 34 knees measured, 24 had symptoms of patellar instability, and 10 were normal. A significant negative correlation between relaxed Q-angle and TT–TG in all knees was demonstrated (p = 0.028). In symptomatic knees, contracted Q-angle also demonstrated a significant negative correlation with TT–TG (p = 0.037).
Conclusions
If TT–TG distance is regarded as the gold standard measurement, Q-angle is not a reliable indicator of patellar instability. There is a clear need to develop methods to more fully characterise the knee and factors contributing to patellar instability.
Level of evidence
II.
KW - patellar instability
KW - Q-angle
KW - TT–TG distance
KW - correlation
U2 - 10.1007/s00167-012-1907-8
DO - 10.1007/s00167-012-1907-8
M3 - Article
SN - 0942-2056
VL - 20
SP - 2399
EP - 2404
JO - Knee Surgery, Sports Traumatology, Arthroscopy
JF - Knee Surgery, Sports Traumatology, Arthroscopy
IS - 12
ER -