Abstract
The late Miocene palaeorecord provides evidence for a warmer and wetter climate than that of today, and there is uncertainty in the palaeo-CO2 record of at least 200 ppm. We present results from fully coupled atmosphere-ocean-vegetation simulations for the late Miocene that examine the relative roles of palaeogeography (topography and ice sheet geometry) and CO2 concentration in the determination of late Miocene climate through comprehensive terrestrial model-data comparisons. Assuming that these data accurately reflect the late Miocene climate, and that the late Miocene palaeogeographic reconstruction used in the model is robust, then results indicate that:
1. Both palaeogeography and atmospheric CO2 contribute to the proxy-derived precipitation differences between the late Miocene and modern reference climates. However these contributions exibit synergy and so do not add linearly.
2. The vast majority of the proxy-derived temperature differences between the late Miocene and modern reference climates can only be accounted for if we assume a palaeo-CO2 concentration towards the higher end of the range of estimates.
Original language | English |
---|---|
Pages (from-to) | 1257-1285 |
Journal | Climate of the Past |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2012 |