TY - JOUR
T1 - The Reliability and Validity of Fatigue Measures During Multiple-Sprint Work: An Issue Revisited
AU - Glaister, Mark
AU - Howatson, Glyn
AU - Pattison, John
AU - McInnes, Gillian
PY - 2008
Y1 - 2008
N2 - The ability to repeatedly produce a high-power output or sprint speed is a key fitness component of most field and court sports. The aim of this study was to evaluate the validity and reliability of eight different approaches to quantify this parameter in tests of multiple-sprint performance. Ten physically active men completed two trials of each of two multiple-sprint running protocols with contrasting recovery periods. Protocol 1 consisted of 12 × 30-m sprints repeated every 35 seconds; protocol 2 consisted of 12 × 30-m sprints repeated every 65 seconds. All testing was performed in an indoor sports facility, and sprint times were recorded using twin-beam photocells. All but one of the formulae showed good construct validity, as evidenced by similar within-protocol fatigue scores. However, the assumptions on which many of the formulae were based, combined with poor or inconsistent test-retest reliability (coefficient of variation range: 0.8-145.7%; intraclass correlation coefficient range: 0.09-0.75), suggested many problems regarding logical validity. In line with previous research, the results support the percentage decrement calculation as the most valid and reliable method of quantifying fatigue in tests of multiple-sprint performance.
AB - The ability to repeatedly produce a high-power output or sprint speed is a key fitness component of most field and court sports. The aim of this study was to evaluate the validity and reliability of eight different approaches to quantify this parameter in tests of multiple-sprint performance. Ten physically active men completed two trials of each of two multiple-sprint running protocols with contrasting recovery periods. Protocol 1 consisted of 12 × 30-m sprints repeated every 35 seconds; protocol 2 consisted of 12 × 30-m sprints repeated every 65 seconds. All testing was performed in an indoor sports facility, and sprint times were recorded using twin-beam photocells. All but one of the formulae showed good construct validity, as evidenced by similar within-protocol fatigue scores. However, the assumptions on which many of the formulae were based, combined with poor or inconsistent test-retest reliability (coefficient of variation range: 0.8-145.7%; intraclass correlation coefficient range: 0.09-0.75), suggested many problems regarding logical validity. In line with previous research, the results support the percentage decrement calculation as the most valid and reliable method of quantifying fatigue in tests of multiple-sprint performance.
U2 - 10.1519/JSC.0b013e318181ab80
DO - 10.1519/JSC.0b013e318181ab80
M3 - Article
SN - 1064-8011
VL - 22
SP - 1597
EP - 1601
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - 5
ER -