TY - UNPB
T1 - The role of buoyancy forcing for northern North Atlantic SST variability across multiple time scales
AU - Risebrobakken, Bjørg
AU - Jensen, Mari F.
AU - Langehaug, Helene R.
AU - Eldevik, Tor
AU - Sandø, Anne Britt
AU - Li, Camille
AU - Born, Andreas
AU - McClymont, Erin L.
AU - Salzmann, Ulrich
AU - De Schepper, Stijn
N1 - Funding information: We acknowledge support from the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research and RCN projects No 221712 and 229819. The model simulations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway, project NN9709K. The CMIP6 analysis is part of the IS-ENES3 project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 824084.
PY - 2022/10/4
Y1 - 2022/10/4
N2 - Analyses of observational data (from year 1870 AD) show that Sea Surface Temperature (SST) anomalies along the pathway of Atlantic Water transport in the North Atlantic, the Norwegian Sea and the Iceland Sea are in-phase at multidecadal time scales. In-phase SST anomaly relationships are also observed over hundreds of thousands of years during parts of the Pliocene (5.23–5.03, 4.63–4.43 and 4.33–4.03 Ma). However, when investigating CMIP6 SSP126 future scenario runs (next century) and Pliocene reconstructions (5.23–3.13 Ma), three additional phase relations emerge: 1) The Norwegian Sea is out of phase with the North Atlantic and the Iceland Sea (Pliocene; 4.93-4.73 and 3.93–3.63 Ma); 2) The Iceland Sea is out of phase with the North Atlantic and the Norwegian Sea (Pliocene; 3.43–3.23 Ma); 3) The North Atlantic is out of phase with the Norwegian and Iceland Seas (future trend). Hence, out of phase relationships seem to be possible in equilibrium climates (Pliocene) as well as in response to transient forcing (CMIP6 SSP 126 low-emission future scenario). Since buoyancy is a key forcing for inflow of Atlantic Water to the Norwegian Sea, we investigate the impacts of buoyancy forcing on the phase relation between SST anomalies in the North Atlantic, Norwegian and Iceland Seas. This is done by performing a range of idealized experiments using the Massachusetts Institute of Technology general circulation model (MITgcm). Through these idealized experiments we can reproduce three out of four of the documented phase relations: in-phase relationships under weak to intermediate fresh water forcing over the Nordic Seas; the Iceland Sea out of phase with the North Atlantic and the Norwegian Sea under weak atmospheric warming over the Nordic Seas; and the North Atlantic out of phase with the Norwegian and Iceland Seas under strong atmospheric warming over the Nordic Seas. We suggest that the unexplained phase relation, when the Norwegian Sea SSTs are out of phase with the North Atlantic and the Iceland Sea, may reflect a response to a weakened Norwegian Atlantic Current compensated by a strong Irminger current, or an expanded East Greenland Current.
AB - Analyses of observational data (from year 1870 AD) show that Sea Surface Temperature (SST) anomalies along the pathway of Atlantic Water transport in the North Atlantic, the Norwegian Sea and the Iceland Sea are in-phase at multidecadal time scales. In-phase SST anomaly relationships are also observed over hundreds of thousands of years during parts of the Pliocene (5.23–5.03, 4.63–4.43 and 4.33–4.03 Ma). However, when investigating CMIP6 SSP126 future scenario runs (next century) and Pliocene reconstructions (5.23–3.13 Ma), three additional phase relations emerge: 1) The Norwegian Sea is out of phase with the North Atlantic and the Iceland Sea (Pliocene; 4.93-4.73 and 3.93–3.63 Ma); 2) The Iceland Sea is out of phase with the North Atlantic and the Norwegian Sea (Pliocene; 3.43–3.23 Ma); 3) The North Atlantic is out of phase with the Norwegian and Iceland Seas (future trend). Hence, out of phase relationships seem to be possible in equilibrium climates (Pliocene) as well as in response to transient forcing (CMIP6 SSP 126 low-emission future scenario). Since buoyancy is a key forcing for inflow of Atlantic Water to the Norwegian Sea, we investigate the impacts of buoyancy forcing on the phase relation between SST anomalies in the North Atlantic, Norwegian and Iceland Seas. This is done by performing a range of idealized experiments using the Massachusetts Institute of Technology general circulation model (MITgcm). Through these idealized experiments we can reproduce three out of four of the documented phase relations: in-phase relationships under weak to intermediate fresh water forcing over the Nordic Seas; the Iceland Sea out of phase with the North Atlantic and the Norwegian Sea under weak atmospheric warming over the Nordic Seas; and the North Atlantic out of phase with the Norwegian and Iceland Seas under strong atmospheric warming over the Nordic Seas. We suggest that the unexplained phase relation, when the Norwegian Sea SSTs are out of phase with the North Atlantic and the Iceland Sea, may reflect a response to a weakened Norwegian Atlantic Current compensated by a strong Irminger current, or an expanded East Greenland Current.
U2 - 10.5194/egusphere-2022-959
DO - 10.5194/egusphere-2022-959
M3 - Preprint
SP - 1
EP - 27
BT - The role of buoyancy forcing for northern North Atlantic SST variability across multiple time scales
PB - Copernicus GmbH
CY - Göttingen, Germany
ER -