Abstract
The infinite-genus limit of the KdV-Whitham equations is derived. The limit involves special scaling for the associated spectral surface such that the integrated density of states remains finite as N → ∞ (the thermodynamic type limit). The limiting integro-differential system describes slow evolution of the density of states and can be regarded as the kinetic equation for soliton gas.
Original language | English |
---|---|
Pages (from-to) | 374-383 |
Number of pages | 10 |
Journal | Physics Letters, Section A: General, Atomic and Solid State Physics |
Volume | 311 |
Issue number | 4-5 |
Early online date | 8 Apr 2003 |
DOIs | |
Publication status | Published - 19 May 2003 |
Externally published | Yes |
Keywords
- Finite-gap potentials
- Modulation equations
- Rotation number
- Thermodynamic limit