Abstract
Due to the complexity of oil-in-water emulsions, the existing literature is still missing a mathematical tool that can describe membrane fouling in a fully quantitative manner on the basis of relevant fouling mechanisms.
Hypothesis
In this work, a quantitative model that successfully describes cake layer formation and pore blocking is presented. We propose that the degree of pore blocking is determined by the membrane contact angle and the resulting surface coverage, while the cake layer is described by a mass balance and a cake erosion flux.
Validation
The model is validated by comparison to experimental data from previous works (Dickhout et al. 2019; Virga et al., 2020) where membrane type, surfactant type and salinity were varied. Most input parameters could be directly taken from the experimental conditions, while four fitting parameters were required.
Findings
The experimental data can be well described by the model which was developed to provide insight into the dominant fouling mechanisms. Moreover, where existing models usually assume that pore blocking precedes cake layer formation, here we find that cake layer formation can start and occur while the degree of pore blocking is still increasing, in line with the more dynamic nature of oil droplets filtration. These new conceptual advances in the field of colloid and interface science open up new pathways for membrane fouling understanding, prevention and control.
Hypothesis
In this work, a quantitative model that successfully describes cake layer formation and pore blocking is presented. We propose that the degree of pore blocking is determined by the membrane contact angle and the resulting surface coverage, while the cake layer is described by a mass balance and a cake erosion flux.
Validation
The model is validated by comparison to experimental data from previous works (Dickhout et al. 2019; Virga et al., 2020) where membrane type, surfactant type and salinity were varied. Most input parameters could be directly taken from the experimental conditions, while four fitting parameters were required.
Findings
The experimental data can be well described by the model which was developed to provide insight into the dominant fouling mechanisms. Moreover, where existing models usually assume that pore blocking precedes cake layer formation, here we find that cake layer formation can start and occur while the degree of pore blocking is still increasing, in line with the more dynamic nature of oil droplets filtration. These new conceptual advances in the field of colloid and interface science open up new pathways for membrane fouling understanding, prevention and control.
Original language | English |
---|---|
Pages (from-to) | 431-439 |
Number of pages | 9 |
Journal | Journal of Colloid and Interface Science |
Volume | 621 |
Early online date | 25 Apr 2022 |
DOIs | |
Publication status | Published - 1 Sept 2022 |
Keywords
- Fouling modelling
- Membrane fouling
- O/W emulsion
- Produced water treatment