TY - JOUR
T1 - Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices
T2 - Effect of pin thickness and PCM volume fraction
AU - Arshad, Adeel
AU - Ali, Hafiz Muhammad
AU - Ali, Muzaffar
AU - Manzoor, Shehryar
PY - 2017/2/5
Y1 - 2017/2/5
N2 - The present experimental investigation focuses on the passive cooling of electronic devices by using phase change material (PCM) based pin-fin heat sinks to increase reliability, to ensure sufficiently lower temperature, to stretch the operating duration and to improve the functionality of installed features. Paraffin wax is used as a PCM and filled in heat sinks made of aluminum. As the thermal conductivity of PCM is very low, aluminum square fins are used as thermal conductivity enhancer (TCE). A volume fraction of TCE is kept constant at 9% and the uniform heat flux is applied to finned and un-finned heat sinks. An un-finned heat sink is used for base line comparison. Fin thicknesses of TCE of 1 mm, 2 mm, and 3 mm with square cross sectional area are investigated with a constant height of 20 mm. Volume fractions of PCM are varied as 0.00, 0.33, 0.66 and 1.00 for each heat sink to determine the thermal performance. The present study reports thermal performance at various heat fluxes to enhance the operating time for different set point temperatures (SPTs) and to compare the latent heat phase duration for various heat sinks tested. The results reveal that maximum thermal performance in operating time is achieved for 2 mm thick pin-fin heat sink filled with PCM volumetric fraction of 1.00.
AB - The present experimental investigation focuses on the passive cooling of electronic devices by using phase change material (PCM) based pin-fin heat sinks to increase reliability, to ensure sufficiently lower temperature, to stretch the operating duration and to improve the functionality of installed features. Paraffin wax is used as a PCM and filled in heat sinks made of aluminum. As the thermal conductivity of PCM is very low, aluminum square fins are used as thermal conductivity enhancer (TCE). A volume fraction of TCE is kept constant at 9% and the uniform heat flux is applied to finned and un-finned heat sinks. An un-finned heat sink is used for base line comparison. Fin thicknesses of TCE of 1 mm, 2 mm, and 3 mm with square cross sectional area are investigated with a constant height of 20 mm. Volume fractions of PCM are varied as 0.00, 0.33, 0.66 and 1.00 for each heat sink to determine the thermal performance. The present study reports thermal performance at various heat fluxes to enhance the operating time for different set point temperatures (SPTs) and to compare the latent heat phase duration for various heat sinks tested. The results reveal that maximum thermal performance in operating time is achieved for 2 mm thick pin-fin heat sink filled with PCM volumetric fraction of 1.00.
KW - Heat sink
KW - Paraffin wax
KW - Phase change materials (PCMs)
KW - Thermal conductivity enhancer (TCE)
KW - Thermal management (TM)
UR - http://www.scopus.com/inward/record.url?scp=84994005720&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2016.10.090
DO - 10.1016/j.applthermaleng.2016.10.090
M3 - Article
AN - SCOPUS:84994005720
SN - 1359-4311
VL - 112
SP - 143
EP - 155
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
ER -