Abstract
Ti3C2Tx MXene was synthesized and the 2D layers were hybridized with Au nanoparticle(AuNP) through the in-situ method. The study was successfully prepared MXene 2D layerand the same was TEM captured as well. Polyimide/MXene-AuNP (PI/Mxene-AuNP)transducing conducting nanocomposite thin film was synthesized and evaluated the newmaterial’s capability to use as a transducing thin film for biosensing application. Thebioreceptor was prepared on the delay line area of the SAW device by covalentlyimmobilizing mouse monoclonal antibody of carcinoembryonic antigen (CEA) through thethioglycolic acid arm linker mechanism. Immunoassay analysis has suggested that thebiosensor responds linearly with the increase in the concentration of the CEA sample. Thelimit of detection was observed at 0.001 ng/ml. The insertion loss of the bioreceptor wasrecorded at 10 dB, which also mattered in the high sensitivity of the biosensor. The biosensorhas shown excellent selectivity within the environment of other common tumour markers andwas stable for 75 days under periodical testing conditions. Clinical serum samples wereanalyzed successfully and the results were compared with values obtained through the ELISAmethod.
Original language | English |
---|---|
Article number | 112998 |
Number of pages | 8 |
Journal | Sensors and Actuators, A: Physical |
Volume | 331 |
Early online date | 24 Jul 2021 |
DOIs | |
Publication status | Published - 1 Nov 2021 |
Keywords
- MXene
- Ti3C2Tx
- AuNP
- Biosensor
- CEA
- SAW