TY - JOUR
T1 - Transverse MHD Waves as Signatures of Braiding-induced Magnetic Reconnection in Coronal Loops
AU - Sukarmadji, Ramada
AU - Antolin, Patrick
N1 - Funding information: P.A. acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/2). IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research Center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre. SDO is part of NASA's Living With a Star Program. All data used in this work are publicly available through the websites of the respective solar missions. Lastly, the authors would like to thank Tom Van Doorsselaere and Mark Cheung for the helpful discussions which greatly improved the manuscript.
PY - 2024/1/20
Y1 - 2024/1/20
N2 - A major coronal heating theory based on magnetic reconnection relies on the existence of braided magnetic field structures in the corona. In this small-angle reconnection scenario, numerical simulations indicate that the reconnected magnetic field lines are driven sideways by magnetic tension and can overshoot from their new rest position, thereby leading to low-amplitude transverse MHD waves. This provides an efficient mechanism for transverse MHD wave generation, and the direct causality also constitutes substantial evidence of reconnection from braiding. However, this wave-generation mechanism has never been directly observed. Recently, the telltale signature of small-angle reconnection in a sheared coronal structure has been identified through nanojets, which are small, short-lived, and fast jetlike bursts in the nanoflare range transverse to the guide field. We present for the first time Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations of transverse MHD waves in a coronal loop that directly result from braiding-induced reconnection. The reconnection is identified by the presence of nanojets at the loop apex that release nanoflare-range energy. We find that the oscillations have an energy flux on the order of 106–108 erg cm−2 s−1, which is within the budget to power active region loops. The estimated kinetic and thermal energy from the nanojets is also sufficient to power the transverse waves and sustain the observed heating at the loop apex. This discovery provides major support to (a) existing theories that transverse MHD waves can be a signature of reconnection, (b) the existence of braiding in coronal structures, and (c) the coronal reconnection scenario identified by nanojets.
AB - A major coronal heating theory based on magnetic reconnection relies on the existence of braided magnetic field structures in the corona. In this small-angle reconnection scenario, numerical simulations indicate that the reconnected magnetic field lines are driven sideways by magnetic tension and can overshoot from their new rest position, thereby leading to low-amplitude transverse MHD waves. This provides an efficient mechanism for transverse MHD wave generation, and the direct causality also constitutes substantial evidence of reconnection from braiding. However, this wave-generation mechanism has never been directly observed. Recently, the telltale signature of small-angle reconnection in a sheared coronal structure has been identified through nanojets, which are small, short-lived, and fast jetlike bursts in the nanoflare range transverse to the guide field. We present for the first time Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations of transverse MHD waves in a coronal loop that directly result from braiding-induced reconnection. The reconnection is identified by the presence of nanojets at the loop apex that release nanoflare-range energy. We find that the oscillations have an energy flux on the order of 106–108 erg cm−2 s−1, which is within the budget to power active region loops. The estimated kinetic and thermal energy from the nanojets is also sufficient to power the transverse waves and sustain the observed heating at the loop apex. This discovery provides major support to (a) existing theories that transverse MHD waves can be a signature of reconnection, (b) the existence of braiding in coronal structures, and (c) the coronal reconnection scenario identified by nanojets.
KW - Magnetohydrodynamics
KW - Solar corona
KW - Solar coronal waves
KW - Solar magnetic fields
KW - The Sun
UR - http://www.scopus.com/inward/record.url?scp=85183675429&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ad1402
DO - 10.3847/2041-8213/ad1402
M3 - Article
SN - 2041-8205
VL - 961
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L17
ER -