TREK-1 and TREK-2 knockout mice are not resistant to halothane or isoflurane

Kira A. Spencer, Christian B. Woods, Hailey M. Worstman, Simon Johnson, Jan-Marino Ramirez, Philip G. Morgan, Margaret M. Sedensky*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
7 Downloads (Pure)

Abstract

Background
A variety of molecular targets for volatile anesthetics have been suggested, including the anesthetic-sensitive potassium leak channel, TREK-1. Knockout of TREK-1 is reported to render mice resistant to volatile anesthetics, making TREK-1 channels compelling targets for anesthetic action. Spinal cord slices from mice, either wild type or an anesthetic- hypersensitive mutant, Ndufs4, display an isoflurane-induced outward potassium leak that correlates with their minimum alveolar concentrations and is blocked by norfluoxetine. The hypothesis was that TREK-1 channels conveyed this current and contribute to the anesthetic hypersensitivity of Ndufs4. The results led to evaluation of a second TREK channel, TREK-2, in control of anesthetic sensitivity.

Methods
The anesthetic sensitivities of mice carrying knockout alleles of Trek-1 and Trek-2, the double knockout Trek-1;Trek-2, and Ndufs4;Trek-1 were measured. Neurons from spinal cord slices from each mutant were patch clamped to characterize isoflurane-sensitive currents. Norfluoxetine was used to identify TREK-dependent currents.

Results
The mean values for minimum alveolar concentrations (± SD) between wild type and two Trek-1 knockout alleles in mice (P values, Trek-1 compared to wild type) were compared. For wild type, minimum alveolar concentration of halothane was 1.30% (0.10), and minimum alveolar concentration of isoflurane was 1.40% (0.11); for Trek-1tm1Lex, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.387), and minimum alveolar concentration of isoflurane was 1.38% (0.09; P = 0.268); and for Trek-1tm1Lzd, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.482), and minimum alveolar concentration of isoflurane was 1.41% (0.12; P = 0.188). Neither allele was resistant for loss of righting reflex. The EC50 values of Ndufs4;Trek-1tm1Lex did not differ from Ndufs4 (for Ndufs4, EC50 of halothane, 0.65% [0.05]; EC50 of isoflurane, 0.63% [0.05]; and for Ndufs4;Trek-1tm1Lex, EC50 of halothane, 0.58% [0.07; P = 0.004]; and EC50 of isoflurane, 0.61% [0.06; P = 0.442]). Loss of TREK-2 did not alter anesthetic sensitivity in a wild-type or Trek-1 genetic background. Loss of TREK-1, TREK-2, or both did not alter the isoflurane-induced currents in wild-type cells but did cause them to be norfluoxetine insensitive.

Conclusions
Loss of TREK channels did not alter anesthetic sensitivity in mice, nor did it eliminate isoflurane-induced transmembrane currents. However, the isoflurane-induced currents are norfluoxetine-resistant in Trek mutants, indicating that other channels may function in this role when TREK channels are deleted.
Original languageEnglish
Pages (from-to)63-76
Number of pages14
JournalAnesthesiology
Volume139
Issue number1
Early online date7 Apr 2023
DOIs
Publication statusPublished - 1 Jul 2023

Keywords

  • Anesthetics, Inhalation/pharmacology
  • Animals
  • Electron Transport Complex I/genetics
  • Halothane/pharmacology
  • Isoflurane/pharmacology
  • Mice
  • Mice, Knockout
  • Potassium Channels, Tandem Pore Domain/genetics

Cite this