TY - JOUR
T1 - Upper bound projection and Stochastic isovists
T2 - a solution to the comparison of Visibility Graph Analysis systems
AU - Dalton, Nick
AU - Dalton, Ruth
AU - McElhinney, Sam
AU - Mavros, Panagiotis
N1 - This is a Chinese language translation of a previous conference paper
PY - 2023/4/8
Y1 - 2023/4/8
N2 - Visibility graph analysis (VGA) (Turner et al., 2001) is a widespread technique in the space syntax community, used to evaluate urban and building designs. To compare different spatial configurations, architects and researchers have relied on the use of the measure integration, based on D-value relativisation. This paper points out that this form of relativisation was developed originally for convex and axial analysis, the graphs of which have different structural properties compared to the kinds of networks found in typical VGA graphs. Using a new technique of incrementally increasing visibility graph density, we show that the integration value for a fixed point does not remain constant as the size of the graph/network increases. Using several graphs, we empirically demonstrate this non-consistency. We evaluate Tecklenburg (Teklenburg et al., 1993), NAIN (Hillier et al., 2012) and depth-decay methods of relativisation and show that these processes do not empirically produce the necessary stability required. From this, we conclude that it is difficult to compare integration values for VGA analyses using the traditional measure of integration based on known relativisation techniques.To solve this, we introduce the notion of Restricted Random Visibility Graph Analysis or R- VGA. A fixed number of randomly distributed points spread over the system. Using R-VGA as a gold standard, we then introduce a new empirical relativisation called upper bound projection relativisation (UBPR) specifically for the relativisation of gridded, non-gridded and other dense isovist graphs. In conclusion, we suggest that traditional integration relativisation (the D-value) will always create only approximate solutions. Using UBPR, it is now possible for researchers to accurately compare different spatial models of different sizes.
AB - Visibility graph analysis (VGA) (Turner et al., 2001) is a widespread technique in the space syntax community, used to evaluate urban and building designs. To compare different spatial configurations, architects and researchers have relied on the use of the measure integration, based on D-value relativisation. This paper points out that this form of relativisation was developed originally for convex and axial analysis, the graphs of which have different structural properties compared to the kinds of networks found in typical VGA graphs. Using a new technique of incrementally increasing visibility graph density, we show that the integration value for a fixed point does not remain constant as the size of the graph/network increases. Using several graphs, we empirically demonstrate this non-consistency. We evaluate Tecklenburg (Teklenburg et al., 1993), NAIN (Hillier et al., 2012) and depth-decay methods of relativisation and show that these processes do not empirically produce the necessary stability required. From this, we conclude that it is difficult to compare integration values for VGA analyses using the traditional measure of integration based on known relativisation techniques.To solve this, we introduce the notion of Restricted Random Visibility Graph Analysis or R- VGA. A fixed number of randomly distributed points spread over the system. Using R-VGA as a gold standard, we then introduce a new empirical relativisation called upper bound projection relativisation (UBPR) specifically for the relativisation of gridded, non-gridded and other dense isovist graphs. In conclusion, we suggest that traditional integration relativisation (the D-value) will always create only approximate solutions. Using UBPR, it is now possible for researchers to accurately compare different spatial models of different sizes.
KW - VGA
KW - Integration
KW - Stochastic isovist
KW - Relativisation
KW - Space Syntax theory
UR - http://urbandesign.tsinghuajournals.com/EN/2096-1235/home.shtml
M3 - Article
SN - 2096-1235
VL - 5
SP - 56
EP - 71
JO - The Journal of Urban Design
JF - The Journal of Urban Design
IS - 043
ER -