Using adjacency matrices to lay out larger small-world networks

Helen Gibson, Paul Vickers

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
13 Downloads (Pure)


Many networks exhibit small-world properties. The structure of a small-world network is characterized by short average path lengths and high clustering coefficients. Few graph layout methods capture this structure well which limits their effectiveness and the utility of the visualization itself. Here we present an extension to our novel graphTPP layout method for laying out small-world networks using only their topological properties rather than their node attributes. The Watts-Strogatz model is used to generate a variety of graphs with a small-world network structure. Community detection algorithms are used to generate six different clusterings of the data. These clusterings, the adjacency matrix and edgelist are loaded into graphTPP and, through user interaction combined with linear projections of the adjacency matrix, graphTPP is able to produce a layout which visually separates these clusters. These layouts are compared to the layouts of two force-based techniques. graphTPP is able to clearly separate each of the communities into a spatially distinct area and the edge relationships between the clusters show the strength of their relationship. As a secondary contribution, an edge-grouping algorithm for graphTPP is demonstrated as a means to reduce visual clutter in the layout and reinforce the display of the strength of the relationship between two communities.
Original languageEnglish
Pages (from-to)80-92
Number of pages13
JournalApplied Soft Computing
Early online date29 Jan 2016
Publication statusPublished - May 2016


Dive into the research topics of 'Using adjacency matrices to lay out larger small-world networks'. Together they form a unique fingerprint.

Cite this