Utilizing partial policies for identifying equivalence of behavioral models

Yifeng Zeng*, Prashant Doshi, Yinghui Pan, Hua Mao, Muthukumaran Chandrasekaran, Jian Luo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Citations (Scopus)

Abstract

We present a novel approach for identifying exact and approximate behavioral equivalence between models of agents. This is significant because both decision making and game play in multiagent settings must contend with behavioral models of other agents in order to predict their actions. One approach that reduces the complexity of the model space is to group models that are behaviorally equivalent. Identifying equivalence between models requires solving them and comparing entire policy trees. Because the trees grow exponentially with the horizon, our approach is to focus on partial policy trees for comparison and determining the distance between updated beliefs at the leaves of the trees. We propose a principled way to determine how much of the policy trees to consider, which trades off solution quality for efficiency. We investigate this approach in the context of the interactive dynamic influence diagram and evaluate its performance.

Original languageEnglish
Title of host publicationAAAI-11 / IAAI-11 - Proceedings of the 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference
Pages1083-1088
Number of pages6
Publication statusPublished - 2011
Externally publishedYes
Event25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11 / IAAI-11 - San Francisco, CA, United States
Duration: 7 Aug 201111 Aug 2011

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume2

Conference

Conference25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11 / IAAI-11
Country/TerritoryUnited States
CitySan Francisco, CA
Period7/08/1111/08/11

Cite this