Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences

Joames K. Freitas Leal, Edwin Lasonder, Vikram Sharma, Jürgen Schiller, Giuseppina Fanelli, Sara Rinalducci, Roland Brock, Giel Bosman

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
16 Downloads (Pure)

Abstract

Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated
understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and
coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.
Original languageEnglish
Article number6
Number of pages16
JournalProteomes
Volume8
Issue number2
DOIs
Publication statusPublished - 31 Mar 2020

Fingerprint

Dive into the research topics of 'Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences'. Together they form a unique fingerprint.

Cite this