Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory

Trung-Kien Nguyen, Thuc Vo, Huu-Tai Thai

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
2 Downloads (Pure)

Abstract

An improved transverse shear stiffness for vibration and buckling analysis of functionally graded sandwich plates based on the first-order shear deformation theory is proposed in this paper. The transverse shear stress obtained from the in-plane stress and equilibrium equation allows to analytically derive an improved transverse shear stiffness and associated shear correction factor of the functionally graded sandwich plate. Sandwich plates with functionally graded faces and both homogeneous hardcore and softcore are considered. The material property is assumed to be isotropic at each point and vary through the plate thickness according to a power-law distribution of the volume fraction of the constituents. Equations of motion and boundary conditions are derived from Hamilton’s principle. The Navier-type solutions are obtained for simply supported boundary conditions, and exact formulae are proposed and compared with the existing solutions to verify the validity of the developed model. Numerical results are obtained for simply supported functionally graded sandwich plates made of three sets of material combinations of metal and ceramic, Al/Al2O3, Al/SiC and Al/WC to investigate the effects of the power-law index, thickness ratio of layer, material contrast on the shear correction factors, natural frequencies and critical buckling loads as well as load–frequency curves.
Original languageEnglish
Pages (from-to)2110-2131
JournalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Volume228
Issue number12
DOIs
Publication statusPublished - Aug 2014

Fingerprint

Dive into the research topics of 'Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory'. Together they form a unique fingerprint.

Cite this