Voltage-induced spreading and superspreading of liquids

Glen McHale, Carl Brown, Naresh Sampara

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)
14 Downloads (Pure)


The ability to quickly spread a liquid across a surface and form a film is fundamental for a diverse range of technological processes, including printing, painting and spraying. We show that liquid dielectrophoresis or electrowetting can produce wetting on normally non-wetting surfaces, without needing modification of the surface topography or chemistry. Additionally, super-spreading can be achieved without needing surfactants in the liquid. We use a modified Hoffman-de Gennes law to predict three distinct spreading regimes: (i) exponential approach to an equilibrium shape, (ii) spreading to complete wetting obeying a Tanner’s law-type relationship, and (iii) superspreading towards a complete wetting film. We demonstrate quantitative experimental agreement with these predictions using dielectrophoresis induced spreading of stripes of 1,2 propylene glycol. Our findings show how the rate of spreading of a partial wetting system can be controlled using uniform and non-uniform electric fields and how to induce more rapid super-spreading using voltage control.
Original languageEnglish
Pages (from-to)1605
JournalNature Communications
Publication statusPublished - 19 Mar 2013


Dive into the research topics of 'Voltage-induced spreading and superspreading of liquids'. Together they form a unique fingerprint.

Cite this