Abstract
We derive weak turbulence and quasilinear models for relativistic charged particle dynamics in pitch-angle and energy space, due to interactions with electromagnetic waves propagating (anti-)parallel to a uniform background magnetic field. We use a Markovian approach that starts from the consideration of single particle motion in a prescribed electromagnetic field. This Markovian approach has a number of benefits, including: 1) the evident self-consistent relationship between a more general weak turbulence theory and the standard resonant diffusion quasilinear theory (as is commonly used in e.g. radiation belt and solar wind modeling); 2) the general nature of the Fokker-Planck equation that can be derived without any prior assumptions regarding its form; 3) the clear dependence of the form of the Fokker-Planck equation and the transport coefficients on given specific timescales. The quasilinear diffusion coefficients that we derive are not new in and of themselves, but this concise derivation and discussion of the weak turbulence and quasilinear theories using the Markovian framework is physically very instructive. The results presented herein form fundamental groundwork for future studies that consider phenomena for which some of the assumptions made in this manuscript may be relaxed.
Original language | English |
---|---|
Article number | 805699 |
Number of pages | 12 |
Journal | Frontiers in Astronomy and Space Sciences |
Volume | 8 |
DOIs | |
Publication status | Published - 14 Jan 2022 |
Keywords
- Astronomy and Space Sciences
- space plasma
- plasma waves
- wave-particle interactions
- relativistic
- Markov
- quasilinear theory
- weak turbulence
- radiation belts