Abstract
Immiscible fluid displacement with average front velocities in the capillary-dominated regime is studied in a transparent Hele-Shaw cell with cylindrical posts. Employing various combinations of fluids and wall materials allows us to cover a range of advancing contact angles 46∘≤θa≤180∘ of the invading fluid in our experiments. In parallel, we study the displacement process in particle-based simulations that account for wall wettability. Considering the same arrangement of posts in experiments and simulation, we find a consistent crossover between stable interfacial displacement at θa≲80∘ and capillary fingering at high contact angles θa≳120∘. The position of the crossover is quantified through the evolution of the interface length and the final saturation of the displaced fluid. A statistical analysis of the local displacement processes demonstrates that the shape evolution of the fluid front is governed by local instabilities as proposed by Cieplak and Robbins for a quasistatic interfacial displacement [Cieplak and Robbins, Phys. Rev. Lett. 60, 2042 (1988)]. The regime of stable front advances coincides with a corresponding region of contact angles where cooperative interfacial instabilities prevail. Capillary fingering, however, is observed only for large θa, where noncooperative instabilities dominate the invasion process.
Original language | English |
---|---|
Article number | 074202 |
Journal | Physical Review Fluids |
Volume | 1 |
Issue number | 7 |
DOIs | |
Publication status | Published - 3 Nov 2016 |
Externally published | Yes |
Keywords
- displacement of immiscible fluids
- imbibition and injection
- interfacial phenomena
- multiphase flows