TY - JOUR
T1 - Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks
AU - Lin, Zi
AU - Liu, Xiaolei
AU - Collu, Maurizio
N1 - Author at Strathclyde University at the point of acceptance
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Wind power plays a key role in reducing global carbon emission. The power curve provided by wind turbine manufacturers offers an effective way of presenting the global performance of wind turbines. However, due to the complicated dynamics nature of offshore wind turbines, and the harsh environment in which they are operating, wind power forecasting is challenging, but at the same time vital to enable condition monitoring (CM). Wind turbine power prediction, using supervisory control and data acquisition (SCADA) data, may not lead to the optimum control strategy as sensors may generate non-calibrated data due to degradation. To mitigate the adverse effects of outliers from SCADA data on wind power forecasting, this paper proposed a novel approach to perform power prediction using high-frequency SCADA data, based on isolate forest (IF) and deep learning neural networks. In the predictive model, wind speed, nacelle orientation, yaw error, blade pitch angle, and ambient temperature were considered as input features, while wind power is evaluated as the output feature. The deep learning model has been trained, tested, and validated against SCADA measurements. Compared against the conventional predictive model used for outlier detection, i.e. based on Gaussian Process (GP), the proposed integrated approach, which coupled IF and deep learning, is expected to be a more efficient tool for anomaly detection in wind power prediction.
AB - Wind power plays a key role in reducing global carbon emission. The power curve provided by wind turbine manufacturers offers an effective way of presenting the global performance of wind turbines. However, due to the complicated dynamics nature of offshore wind turbines, and the harsh environment in which they are operating, wind power forecasting is challenging, but at the same time vital to enable condition monitoring (CM). Wind turbine power prediction, using supervisory control and data acquisition (SCADA) data, may not lead to the optimum control strategy as sensors may generate non-calibrated data due to degradation. To mitigate the adverse effects of outliers from SCADA data on wind power forecasting, this paper proposed a novel approach to perform power prediction using high-frequency SCADA data, based on isolate forest (IF) and deep learning neural networks. In the predictive model, wind speed, nacelle orientation, yaw error, blade pitch angle, and ambient temperature were considered as input features, while wind power is evaluated as the output feature. The deep learning model has been trained, tested, and validated against SCADA measurements. Compared against the conventional predictive model used for outlier detection, i.e. based on Gaussian Process (GP), the proposed integrated approach, which coupled IF and deep learning, is expected to be a more efficient tool for anomaly detection in wind power prediction.
KW - Deep learning neural networks
KW - Isolation forest
KW - Offshore wind turbines
KW - Outlier detection
KW - Wind power prediction
U2 - 10.1016/j.ijepes.2020.105835
DO - 10.1016/j.ijepes.2020.105835
M3 - Article
VL - 118
JO - International Journal of Electrical Power and Energy Systems
JF - International Journal of Electrical Power and Energy Systems
SN - 0142-0615
M1 - 105835
ER -