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Abstract：With the increasing competition of the manufacturing industry, it is essential for 

manufacturers to develop a new (or next) generation product based on their prior product design, 

product user experience, historical performances, etc. The digital twin (DT) is believed to be a 

suitable technology to support product lifecycle management with excellent data capture and 

analysis capabilities and product family design capabilities. However, it remains a challenge to 

synthesize and incorporate the data and information captured from previous generational products 

development and stored on their individual digital twin instances (DTIs) into next-generation 

product design. To address this problem, this study proposes a new nominal digital twin (NDT) 

concept as a collective digital representation of the current generational product digital mockups 

(DMUs) and all individual DTIs of the built products in services for new generational product 

development. NDT is first defined here as a prototypical and synthesized digital twin (or digital 

representation) of multiple individual digital twins corresponding to multiple physical products in 

use or previously used. By analyzing the data and information on their DTIs, NDT can enable the 

establishment and evolution of a more precise approximated model of many related family products 

used previously or currently in use in various application scenarios and environments in the 

physical world. This paper also demonstrates how a NDT model can be first established in the 

product design phase from various digital mockup models and enhanced later with a stochastic 

forest meta-model based on Bayesian optimization connected to DTIs. With this NDT model, 

collaborative exploration for optimal design solutions during new generation product design and 

improvement can be performed on NDT through multi-objective optimization, which in turn can 

make new generation product design easier and quicker. As a primary verification of the feasibility 

of our proposed approach, a case study has been carried out, and the results have well confirmed the 

our NDT-based new generation product design approach is feasible. 

Key words：nominal digital twin; digital mock-up; closed-loop iterative; new generation 

product design; digital twin-based optimal design.  
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1 Introduction 

In today’s increasingly competitive markets, manufacturers are encouraged to  use virtual 

product and manufacturing models, which are also called “digital mock-ups” (DMU)[1] and 

“digital twins” (DT)[2] in their entire product lifecycle. Without the need for costly and time-

consuming physical mock-ups, these virtual models enable the efficient prediction of the 

consequences of product and procedure development as well as operation and maintenance choices 

based on the behavior and performance of current or past products[3-5]. Especially in design, such 

sophisticated virtual product models are crucial for early and efficient evaluation of the effects of 

design choices on the product's quality and functionality[6]. Current methods to implement DT 

models concentrate mostly on later product life stages such as production and operation[7-10]. 

However, it remains unclear how and in what ways communication, synergy, and coevolution 

between a physical object and its DMUs might result in a more informed, accelerated, and inventive 

design process [11, 12]. 

It has been argued that “a digital twin model serves as a set of linked operation data artifacts 

and simulation models, which is established after the as-manufactured physical entity” [13]. 

However, Grieves believes that the digital twin begins at the beginning of a new product’s lifecycle 

and persists throughout the lifecycle[14]. In the create phase, the prototypical product with variants 

or all the products that can be built, is defined as a digital twin prototype (DTP). In figure 1, in the 

early stage of product development, the as-defined view linking between the product DMU and 

configuration management, provides the right 3D design data including 3D geometry, product 

structure and attributes for each product configuration or variant[15]; The as-designed is the 

successor of the as-defined in the development phase, functional DMU(FDMU) is proposed as a 

carrier, which can simulate what-if scenarios under various engineering domains and models, and 

hold the results of all simulations needed for full presentation of the product behavioral description 

including geometry, behavior and visualization of the simulated results[16]. Note that during the 

design stage, the as-defined and as-designed views may not have corresponding 3D physical models 

yet (sometimes, some 3D prototypes may be built for concept evaluation), and thus the as-defined 

and as-designed views cannot be regarded as digital twin models but only the DMUs. After each 

individual part or component is designed with manufacturing methods and specifications from its 

as-designed view and how all parts are assembled is defined, the resultant DMU is called Industrial 

Digital Mock-Up (iDMU) with more detailed manufacturing information for each part and the 

assembly. Up to this point, iDMU could be regarded as a DTP (prototypical digital Twin or digital 

Twin prototype) [14] or still as a digital model if no intent linking to the DTIs. Here we create a 



月 2013 年 3 3 

nominal digital twin (NDT) derived from iDMU and connected to DTIs and DTA (Digital Twin 

Aggregate).     After an individual product is built, logistically transported and installed, it becomes 

a current physical product C-Pm, and its corresponding C-DTIm will be built from the NDT with 

more detailed transportation, installation and location information just before being put into service, 

which continue traveling in a digital twin instance (DTI) journey during the product in use.  

Therefore, when we look at the product design and development from a generational product 

point of view, many DTI models of the previous generation products have a large amount of data 

and information accumulated from the products can be twinning-back to update NDT by DTA. The 

updated NDT  can be incorporated into the new generation product DMU (n-DMU) development in 

a close-loop fashion. Each DTI can provide ‘real’ working condition and performance data of a 

specific product in use. How to synthesize and incorporate this big data and information from these 

DTIs into new generation product design is a new research question that has not been well 

addressed before.  
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Figure 1 The closed-loop iterative design framework based on DMU and DT 

Motivated by this need, this paper proposes a NDT-based method supporting a closed-loop 

generational product design. The loop starts from a single current product design’s as-defined c-

DMU, moves to its as-designed c-FDMU, and then moves to c-iDMU.  When a physical product is 

produced and put into use,  its individual c-DTIi will be created and kept in updating status. Note 

that each c-DTIi could be different in terms of data captured from its product and running 

environment.   Aggregating data and information on each c-DTIi  back into NDT for a close-loop 

generational product design is important for supporting product lifecycle innovation. Our solution is 
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to synthesize current multiple product c-DTIi into a single current product nominal DT (c-nominal 

DT) by linking a parametric (Meta) model driven by the real-world data on each c-DTIi to an 

optimized approximate model in NDT.  The main contributions of this paper are: 

(1) We introduce a new concept of nominal digital twin (NDT), which can support (a) 

collaboration and cross-learning among individual instantiated product digital twins in the design-

manufacturing-operation-maintenance-design loop and (b) the digital twin (or data) driven new 

generation product design. NDT synthesizes the multi-instantiated product DTIs’ information to 

support the closed-loop new generation product design. 

(2) We propose an NDT-based new generation product design method based our DTIs synthesis 

approach.  Our approach is to link a parametric (Meta) model related to design research needs to 

some analysis of the real-world data to optimize parameters in the corresponding approximate 

model in NDT, which can support a new generation product design based on machine learning. 

The rest of this paper is structured as follows: In the next section, DMU in product 

development and digital twin-driven product design are reviewed. After that, the proposed NDT-

based new generation product design method is described. Its application in the development of a 

high-speed train’s bogie is presented in section 4. Section 5 discusses the relationship between 

Nominal Digital Twin and Digital Twin Aggregate in our approach.  Finally, conclusions are drawn. 

2 Related work 

2.1 DMU in the product development  

The DMU has been defined in broader literature as a comprehensive digital representation of a 

product, component or system throughout the product lifecycle to reflect its geometry, function, 

performance, etc.[22, 23], which has the three technical characteristics of authenticity, full lifecycle 

view, and interdisciplinary. The basic purpose of a DMU is to reduce design and development time 

and promote inexpensive virtual prototyping[24]. DMUs are used by most firms in an effort to 

achieve design solutions as early as feasible in the product life cycle[1]. 

DMU expands the notion of digital prototyping beyond the design stage to production, 

maintenance, and recycling[1]. As defined by the European AIT, DMU is a computer simulation 

model based on a geometric product structure with full structural integrity[1, 25], which is a 

powerful verification tool for supporting including product functionality, assembly and maintenance 

process design, visualization, performance simulation, etc. throughout the entire lifecycle[26]. The 

as-defined view linking between the product DMU and configuration management is the configured 

DMU (CDMU), which provides the right 3D design data including 3D geometry, product structure 

and attributes for each product configuration or variant, and it has a single product structure for all 
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the products within each configuration[15]. The as-designed and as-manufactured views are the 

successors of the as-defined in the series development phases. Many studies have been conducted to 

enhance DMUs for downstream processes, simulations, and system-level manufacturing support 

[27, 28]. In order to enrich the functions and behaviors of DMUs used in the early stage of digital 

product creation, a functional DMU (FDMU) is proposed as a carrier, which comprises the results 

of all simulations within various engineering domains[16]. Furthermore, Mas et al.[29, 30] present 

the Industrial Digital Mock-Up (iDMU) as a shared platform accessible to all product lifecycle 

stakeholders in order to achieve optimum design, and to address the difference between ‘as-

designed’ nominally sized components and ‘as-manufactured’ actual components[17]. The as-

manufactured iDMU is the complete digital definition of manufactured products[19], which can be 

transformed as instantiated iDMU for a single product and is iteratively formed by its 

part/component iDMUs. It can hold  many actual data including product design, process design and 

manufacturing resource data[20]. Friel et al.[28] create an enriched DMU (EDMU) to be used to 

enable a designer to perform tolerance analysis in the CAD domain, which is a reflection of ‘as 

manufactured’ part forms allowing assembly analysis and tolerance consideration to be more 

accurate earlier in the design process. 

In addition to geometric information, DMUs might serve as information models for other 

aspects of data. Kiritsis et al. [31] concentrate primarily on the multi-physics models of the product 

DMU in order to design and anticipate the structural life of the product and to improve 

methodologies for product certification and maintenance. Mas et al. [18, 30] concentrate on 

manufacturing models to solve difficulties associated with the integration of functional and 

industrial design for supporting a collaborative delivery to the producing, maintaining, and 

servicing of the product. For the purpose of model-based systems engineering (MBSE) deployment 

in the context of small and medium-sized businesses (SMEs), Chapurlat and Nastov [24] defined a 

formalization of a DMU and proposed a federating multi-viewpoint modeling approach to construct 

DMU(s) that can be processed in various ways to meet the requirements of various stakeholders.  

Products with a high market value, such as high-tech machine tools, trains, wind turbines, etc., 

are often technologically complex, costly, and reliable, necessitating constant maintenance 

throughout their life cycles[4]. This necessitates improving product design and manufacturing 

utilizing in-service feedback[32] and stresses improved product design through the alignment of 

designers, producers, consumers, and recyclers. Maintenance, use, and decommissioning feedback 

data are crucial to data-driven design and simulation modeling for future scenarios at the BOL 

(Beginning of Life) phase of product. This demands a closed-loop generational product design 

methodology with lifecycle data for current products [31, 33, 34]. The progressively expanded 

product related data and information should be reflected in the DMU of the new product [35]. 
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However, from the standpoint of connotation, DMU concentrates primarily on the representation of 

the geometry, function, and performance of a designed and built product, and does not include any 

references to the operation and maintenance phases. It is difficult for DMUs to enable a closed-loop, 

iterative, and data-driven product design paradigm in the absence of such links. 

2.2 Digital twin-driven product design  

DT is an integrated multi-physics, multi-scale, and probabilistic simulation of an as-

manufactured product, it couples a physical product to its digital representation or digital shadow or 

twin [36]. If only one way communication exists from a physical product to its virtual counterpart, 

it is referred to as a digital shadow[37], and when the two ways communications are established 

automatically, it is a digital twin. Unlike DMUs that just concentrate on the virtual world, DT is 

defined by the bidirectional interactions between the virtual and real worlds. Digital twin models 

are built on DMUs, but they are greatly enhanced by their connections to the physical world, which 

allows for data accumulation and simulation model improvement along the product lifecycle[38]. 

The holistic use of digital twin models in product development will dominate future product 

development [39].  

A new paradigm for data-driven product design has just developed[6]. Many frameworks for 

digital twin-based product design have been developed in the same vein; however, they all describe 

product design based on a single product digital twin. The stages of the product design process 

include conceptual design, detailed design, and virtual verification. After the three phases, the 

prototype will be obtained. Digital twin technology will be used throughout the whole 

procedure[12]. An intelligent vehicle's digital twin was conceptually modeled  [40], under a 

proposed five-dimensional digital twin and it can capture both the product generated data and its 

customers generated data.  Digital twins can also capture product running environmental factors[41]. 

Digital twin-driven virtual verification can help discover design defects and make quick 

modifications, and then improve the design scheme  and cooperation and avoid lengthy verification 

and testing [42]. A general DT architectural reference model was presented in   [43] to facilitate the 

efficient optimization of product families. To examine how digital twin technologies contribute to 

the design of smart manufacturing systems, Researchers [9] provide a novel function-structure-

behavior-control-intelligence-performance framework. By using supervised learning to create a 

more accurate approximation of the physical world, as described in  [44] with the concept of an 

evolutionary digital twin (EDT), a new method for intelligent industrial product creation is 

proposed. 

From the above overview, existing studies on digital twin-driven product design are mainly 

focused on the framework. These frameworks did not pay attention to how to synthesize a 
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potentially huge number of individual digital twins to support new generation product design. This 

is a more complex research issue.  

2.3 Research gap and motivation   

The main issue to be solved in new generation product design is to find a proper way to take 

various feedback information from many existing product DTIs in their later life stages into the 

early stage DMUs of the new generation product design,  making use of all-round data and 

information from various DTs from product design to the manufacturing, operation and 

maintenance phases. This requires creating a nominal digital twin model to connect data and 

information embedded in DMUs in the create phase, with synthesized approximate models of 

products from individual physical product digital twins to support new generation product design. 

To sum up, existing studies on DT-based product design are limited to: 

(1) The digital twin theory emphasizes the description of the real state of the product. Although 

the traditional product data management system can record, share and manage design drawings, 

models and documents, it only establishes a static and idealized product information model, which 

may vary with the actual state of each product. There are deviations in dynamic instance data such 

as machining, assembly, and inspection. Two urgent problems must be solved: how to establish a 

digital twin-based new generation product design model to more accurately describe and manage 

the real manufacturing and operation data of each instance product, and how to integrate it into a 

better approximated (or near ideal) product information model. (2) The core issue is the transition 

from the multi-DTIs of current products to a DMU of a new generation product design. The current 

product manufacturing, operation and maintenance data need to be dynamically fed back to the new 

generation product design, and an approximate information model that more accurately reflects 

product manufacturing, operation and maintenance status data needs to be established.  

Here, we propose a new concept of nominal DT and a new generation product design method 

with it. This method not only facilitates the generation of DMUs for new generation product design 

but also helps meet the demand for product data information models. 

3 NDT based new generation product design method 

3.1 The definition of NDT and its features 

In order to address the above issue, based on the typical definition of digital twin, a new 

broader definition is proposed to support the bidirectional transition and connection between DMUs 

and individual DTIs. The key features (see Fig. 1) of a NDT are twofold: (1) It has the same 

nominal product definition information created in the Design stage and embedded in DMUs; (2) It 
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has nominal (approximate) data-driven application models such as simulation and prediction, which 

are synthesized/learned from multiple individual DTIs into a portfolio of models. The difference 

between an NDT and an individual DTI is that a DTI only has a single physical product related 

manufacturing, transportation, installation, work scenario, performance and behavior data, and its 

associated data driven application models are limited to the corresponding physical product.  

Mainly based on machine intelligence and supplemented by human intelligence, the NDT 

could help effectively establish the behavior law under various uncertainties and scenarios and 

gradually achieve a well approximated model of the real-world products, namely the behavior 

module. When developing a new product, both design and design knowledge reuse are based on not 

only current product but also previous generation products in the same pedigree.  

The application features of applying NDT to new generation product design, as shown in Fig.2, 

include some notable features: 

(1) The NDT clearly builds an approximate digital world corresponding to the real world 

(where multiple products are in use in different environments, scenarios, and statuses). 

(2) The NDT modeling is established by synthesizing different real world models with 

uncertainties in multiple virtual spaces in connections with the previous DMUs. The multi-DTIs are 

aggregated by establishing and synthesizing meta-models of multi-instanced products into a meta-

model of NDT, which is detailed in Section 3.3.  

(3) Compared with current digital twin which mainly uses a virtual space to predict the product 

behavior, the NDT can be constructed using an incremental development method that employs 

multiple DTIs for fast parallel learning and searching, which is helpful not only for fully 

understanding of the existing design solutions and but also for gaining insights for new generation 

product design. This is important to form a continuous product design and development platform 

that enables smart responses to market changes and sustains profit and growth. 
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Figure 2 Core features of the NDT  

3.2 Common closed-loop iterative product digital design framework  

Enabled by cyber-physical systems, model-based system engineering, digital twin, and a 

growing endeavor for data gathering and processing, digital design is rapidly changing to form a 

closed-loop iterative product design framework as shown in Figure 3, leading to huge changes in 

the form and connotation of DMU. Prior to the digital design revolution, product design was 

predominantly a physical artifacts-oriented iterative design process. However, with the introduction 

of the CAE simulation, the way products were designed rapidly changed to digital mock-up model-

oriented iterative design with virtual simulations and verifications. Recently, new design paradigms 

have been developed with the goal of combining design with manufacturing to achieve 



 第 49 卷第 6 期期 10 

manufacture-oriented closed-loop iterative design. In order to achieve closed-loop new product 

iterative design (Fig 3) from design requirement and digital presentation(DP), the DMUs of the new 

generation product need to be established based on the nominal DT of current products, evolving 

from the multi-DTIs of current products to DMUs of the new generation product. Thus, the 

transition from multi-DTIs to NDT  is the central problem in realizing the new generation product 

design  in a closed-loop fashion. The detailed information for each DMU at different stages can be 

referred to the product lifecycle information model[45].  
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Figure 3 Trend of closed-loop digital product design  

3.3 A new generation product design methodology  

As explained before, the NDT acts as the engine that converts massive data handled by data 

lifecycle management into valuable information that can be directly used by designers to make wise 

decisions at various design stages, as required by design method and theory[11]. It is a depiction of 

both the designer's goals and the reality of the situation. According to the situated FBS 

framework[46], design involves back-and-forth interactions between three spaces: expected space, 

virtual/approximate space and physical space (Figure 4). In the primary design step, the expected 



月 2013 年 3 11 

space (corresponding to the ideal world in [44] and the expected world in [46]) is the world that is 

understood, imagined, and produced  by designers. The essence of NDT is to create an approximate 

digital representation of the physical products in the virtual space and then reflect from the virtual 

space back to the expected space. This approximation model should be regarded as a dual-reflection 

of both the expected and physical spaces. The designers are directed to change their assumptions 

depending on the facts that are cross-examined in both the approximate and physical worlds, and to 

make better informed design choices as a result.  Inconsistencies in the function, behavior, and 

structure of the expected product, the virtual product, and the physical product are gradually 

narrowed[11, 46]. 

How to establish this approximation model in NDT is a research problem. Here, we propose to 

link a parametric (Meta) model related to design research needs to some analysis of the real-world 

data to optimize parameters in the corresponding approximate model in NDT.  Their relationships 

are shown in Fig 4.  
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Figure 4 NDT-driven new generation product design framework 
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The aggregating the multi-DTIs to a nominal DT and then to a new generation product DMU 

(sDMU) is an inverse design problem. Considering the defects of DMUs in forward design, forward 

design and inverse design models interact iteratively through feedback[47, 48], based on which a 

combined method of inverse and forward design is proposed, as shown in Figure 4. This method 

helps to establish and synthesize meta-models of multi-instanced products into a meta-model of 

NDT, which aids in the development of new generation products through inverse optimization. The 

NDT contains a set of generalized/enhanced simulation models synthesized from multi-DTIs for the 

new generation product design, but other product definition information such as geometric 

information is the same as that defined in DMUs as a nominal product design.  

In new generation product design, designers can use enhanced simulation models/capabilities 

in NDT based on a better understanding of relationships between the real physical and virtual 

worlds in new product design process, resulting in new as-defined, as-designed, and as-

manufactured sDMUs for a new generation product definition. 
    The meta-model of individual digital twin instance (DTI) is established by stochastic forest meta-model based 

on Bayesian optimization. The multi-objective optimization mathematical model of multi-DTIs fusion is 

developed based on the constructed DTI meta-model. The aggregating method of multi-DTIs as follows: firstly, 

the optimization goal, optimization parameters, and optimization constraints of each instance condition are 

determined by analyzing the instance condition; Secondly, the ideal point achieved by single objective 

optimization is the outcome of single objective optimization that has been applied to each performance index of 

various instance situations. The relevance of the case conditions and the importance of the dynamic performance 

indices are considered while determining the correlation coefficients. Thirdly, the multi-objective optimization 

model is then modified based on the ideal point value and phase relation value, and the comprehensive multi-

objective optimization model under multiple instance conditions is generated. The detailed method is descripted 

below. 

 

（1）The forward design model of DMU generation   

The original design problem is referred to as forward design, whose decision flow is shown in 

Fig.4. Assuming a forward design model: 

( , )Y f X Q=                                                                   (1) 

The system response ( )1 2, , , lY y y y=   is related to the product design specification at 

beginning of the design. There are certain system parameters including environmental factors as 
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input conditions that are assumed to be known in priori, namely ( )1 2, , , mQ q q q=  , such as the 

expected capabilities of the product, the use scenarios of the product, the user’s operating habits, etc. 

The optimal values of design variables ( )1 2, , , nX x x x=   are X* obtained based on the input of Q. 

The corresponding output of design is Yexpected with respect to the optimal design X*. Because of the 

subjectivity of traditional trial evaluation such as load spectrum data acquisition based on 

experimental or prototype testing, it is difficult to know the actual product operating conditions 

prior to design optimization.  

（2）NDT construction method 

Each DTI serves to capture various information with uncertainties associated with a single 

product and simulate them in the digital world. Uncertainties are caused by incomplete and/or 

unknown information. Any product’s actual performance in the physical world can be affected by a 

few factors with uncertainties, which could arise at different phases throughout a product’s lifecycle 

(e.g., production, distribution, usage, maintenance, recycle, etc.). In particular, the aggregation of 

many factorial information with uncertainties may significantly affect a product’s function, behavior, 

and structure. While NDT serves to synthesize DTIs captured data and information with various 

uncertainties in the physical world and simulate them in the digital world, so that more robust 

design solutions can be generated and virtually validated against the information with uncertainties. 

By comparing the virtual context and physical context, designers can deepen their understandings 

of the ideal and real contexts in which a product is used, and such understandings are especially 

important for designers to improve a product’s adaptability. Considering the uncertainties 

influenced by manufacturing errors and other factors, i.e., ε , a product design model forms d 

physical product instances, the as-built product behavior models are as follows: 

 

1 1 1

2 2 2

( , ) (1)
( , ) (2)

......
( , ) ( )d d d

Y f X Q
Y f X Q

Y f X Q d

ε
ε

ε

= +
 = +


 = +

                                                            (2) 

In general, the NDT describes ( ),Y f X Qε ψ ω=  the mapping relationship between X, Q and Y 

with uncertainties ψ, ω and ε respectively. The uncertainty profiles of ψ, ω and ε can be better 

estimated from equation (2). A meta-model (or surrogate model) that represents a family of tasks, 

which are used to simulate the behaviour of structures and provide an approximation of the original 
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model's response in a fraction of time[49, 50]. This relationship can be described by a meta-model 

based on machine learning, such as a random forest model detailed below. 

While following the forward design process, inverse design considers feedbacks of the product 

in use and takes input of identified new design needs. In other words, inverse design imposes a 

feedback loop to forward design. The product operational data mining produces useful product 

usage information regarding the actual system responses Yactual corresponding to the product design 

based on, i.e., X|Yactual, along with the actual observation of system parameters, i.e., Qactual. It reflects 

the inverse relationship from Yactual of system response and X* of design parameters to infer what an 

optimal system parameter setting Q* is supposed to be. Applying this design knowledge to improve 

design for new generation product development, Q*| Yactual is brought back to the forward design 

process to replace the original assumption, i.e., Q*→Qassumed， thus forming a closed loop of design 

decision to yield an improve design that is dedicated to the new needs of customers. 

Current approaches to the implement of multi-DTI fusion lack of a model, which hinders the 

transition from the multi-DTIs to a NDT, i.e., DTI(n)→NDT (1). 

The actual design parameters X subject to changes when a great number of products are in use 

and each individual product is different with constantly changing factors such as wearing, repairing 

and brand new or second-hand part replacement. The actual design parameters of individual product, 

which is expressed into vectors for multi-DTIs. The actual system parameters Q of product are 

different for individual product under different operation conditions and changing physical 

environments. The actual system parameters of individual product, i.e., Qd, are expressed into a 

vector for multi-DTI. Based on the vector, the corresponding output of design is Y with respect to 

the optimal design X, its meta-model is established as follows: 

1 1 1 1

2 2 2 2

: actual ( actual , actual ) (1)
: actual ( actual , actual ) (2)

......
: actual ( actual , actual ) ( )d d d d

DTI Y f X Q
DTI Y f X Q

DTI Y f X Q d

ε
ε

ε

= +
 = +


 = +

（ ） （ ）（ ）

（ ） （ ） （ ）

（ ） （ ） （ ）

                                          (3) 

This paper intends to use random forest model[51] to solve the problem of meta-model 

construction for NDT. As the random forest model has the characteristics of easy implementation, 

low computing cost and good scalability, the random forest model can minimize the loss caused by 

data loss in the case of incomplete data, especially when the data loss is large, the random forest 

model can still maintain high fitting ability. When random forest is used for prediction, data 



月 2013 年 3 15 

sampling is firstly carried out to obtain the training set for establishing each decision tree. Then, a 

decision tree is constructed based on CART node splitting algorithm, and multiple decision trees 

constitute a random forest model. Finally, the average value of the predicted value of all decision 

trees is the predicted value of the random forest model. For the regression problem, the mean value 

of the results of k decision trees is calculated as the final result, and the expression is in Formula (4). 

1

1( ) ( )
k

i
i

R x T x
k =

= ∑                                                                  (4) 

Where, k represents the number of decision trees in the random forest; ( )iT x  represents the 

result of the ith decision tree in the random forest. 

In this paper, a random forest meta model based on Bayesian optimization hyperparameter 

building method is proposed. In this method, various parameters in the original random forest are 

optimized to realize the optimization of the model to achieve the optimal model under different 

parameter combinations. By optimizing the parameters of the random forest regression function, the 

optimal model with different parameter combinations is obtained, and the prediction accuracy of the 

model is improved. The program uses the random forest model in the Python SciKit-learn module 

to set parameters and adjust the combinations continuously. The accuracy of the prediction model is 

obtained in the experiment, and the optimal parameters are obtained through Bayesian optimization, 

so as to find the optimal parameter combination of the random forest prediction model. Gaussian 

process here is the combination process of different parameters in the random forest model, and the 

linear combination of any finite number of samples can be expressed as a joint Gaussian 

distribution: 

( ) ~ ( ( ), ( , ))f x gp m x w x x′                                                                 (5) 

Where, ( ) ( ( ))m x E f x= is the ( )f x mathematical expectation, ( , )x x′ is the x covariance 

function. 

The mean and variance of ( )f x  can be obtained by inputting data into the Gaussian model, 

and the Gaussian distribution of the function can be constructed. By increasing the amount of data, 

the gap between the predicted distribution and the real distribution can be narrowed. 

The process of Bayesian optimization hyperparameter building method for random forest 

meta-model [52] is as follows: 
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Step1: Initialization parameters are randomly generated within the range of the number of 

random forest hyperparameters, and these initialization parameters are input into the Gaussian 

model. Test samples are then input into the fitting model to obtain model output, which is then 

modified to bring the model closer to the true distribution of the function. 

Step2: For the modified Gaussian model to approach the real distribution of the objective 

function faster and more accurately than other combinations of candidate sets, the extraction 

function is used to extract the parameter combination points that need to be evaluated in the 

following step from the modified Gaussian model. 

Step3:  The algorithm ends and exits, and outputs the appropriate parameter combination and 

the model’s prediction error ( , ( ))i ix f x  when the error of the parameter combination satisfies the 

target requirements. 

Step4: If ( )if x  doesn’t satisfy the requirements, add ( , ( ))i ix f x  to the Gaussian model to 

change it, then repeat steps 2 and 3 until the predetermined accuracy requirements are satisfied. To 

assess the correctness of the meta-model, often Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and determination coefficient (R-squared, R2) are utilized, as indicated in formula (6)- (8). 

^
2

1

1 ( )
m

i i
i

MSE y y
m =

= −∑                                                                  (6) 

^

1

1 | ( ) |
m

i i
i

MAE y y
m =

= −∑                                                                  (7) 

^
2

2

2
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1

( )

ii
i

ii
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R

y y
−

−
= −

−

∑

∑
                                                                  (8) 

Where: 
^

i iy y−  is the real value of the test set minus the predicted value. 

(3) The inverse optimization design model with NDT 

In order to build the multi-objective optimization synthesis model from a multi-instance fusion, 

firstly, the optimization goal, optimization parameters, and optimization constraints of each instance 

condition are determined by analyzing the instance condition; Secondly, the ideal point achieved by 

single objective optimization is the outcome of single objective optimization that was applied to 

each performance index of various instance situations. The relevance of the case conditions and the 
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importance of the dynamic performance indices are considered while determining the correlation 

coefficients. Thirdly, the multi-objective optimization model is then modified based on the ideal 

point value and phase relation value, and the comprehensive multi-objective optimization model 

under multiple instance conditions is generated. Finally, in order to create an optimized non-inferior 

solution set, the optimization model is first translated into Python, after which a multi-objective 

intelligent optimization is carried out using the suitable optimization algorithm. 

The multi-objective optimization mathematical model of a multi-instance fusion is developed 

as indicated in Formula (9) based on the previously constructed NDT meta-models. The 

mathematical representation of a solvable multi-objective optimization is created by transforming 

the multi-objective optimization model of multi-instances using the ideal point method and multi-

objective programming method. 

1 11 12 1

2 21 22 2

1 2

1 1 2

max/ min ( ) ( ), ( ), , ( )
max/ min ( ) ( ), ( ), , ( )

max/ min ( ) ( ), ( ), , ( )
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n
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Y X y x y x y x

Y X y x y x y x
s t a y a a y a
x x x

=
 =

 =
 < < < <


∈











                                                           (9) 

Where, x  is the design variable, which has a certain design range, and the lower limit of its 

parameter value is ux and the upper limit is wx ; 1max / min ( )Y X , 2max / min ( )Y X ,…., 

max / min ( )dY X  represent the optimization problem of different instances of working 

conditions; ( )dny x  represents the value of each performance indicator in a specific instance. 

Ideal point method is a kind of evaluation function method for solving multi-objective 

programming problems, mainly by making the target value as close as possible to the ideal value to 

solve, so as to obtain effective solutions. The ideal point determined by the principle of the ideal 

point method represents the ideal optimal solution of a single target obtained separately under the 

same constraints. We need to transform the performance indexes y11(x), y21 (x),… yd1 (x) under 

different instance working conditions into single objective problems by ideal point method. The y11
*, 

y21
*, …, yd1

* represent the ideal optimal solution of a single target obtained separately under the 

same constraints. The optimization mathematical solution of many instances conditions is converted 

into the multi-objective optimization mathematical problem based on the formula (9) as follows: 
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Where, 1 2( ), ( ), , ( )ny X y X y X respectively represent output performance indicators; 

d1 2( ), ( ), , ( )d dny X y X y X respectively represent the performance index values under different 

instance conditions; dω is the weighted coefficient to express the importance of its objective 

function; 
1 2

* * *( ), ( ), , ( )
d d dn

y X y X y X represent the ideal optimal solution of a single target obtained 

separately under the constraints of different instances of working conditions. 

(4) The new generation product design parameters generation and verification  

In expected design space of new generation product, the design corresponding output of ideal 

new generation product is Yexpected with respect to the optimal design Qactual|Yexpected and X*|Yexpected, 

i.e., Yexpected=f(X*|Yexpected, Qactual |Yexpected),  the design parameter of ideal new generation product. 

The key design parameters X*|Yexpected of a bogie as input design data of the new generation 

product, the performance indicators Yexpected is the optimization objective, and range of performance 

metrics as constraints. According to the characteristics of the multi-objective optimization model of 

current product NDT, it is necessary to select the appropriate intelligent optimization algorithm for 

obtaining the design solution of new generation product. i.e. a set of the design parameters for 

satisfying multiple operating conditions.  
The DMU modeling process then uses the design parameters as an input. The CAD and CAE 

software forms the foundation of the sDMU. The sDMU represents actual physical design 

circumstances and characteristics more accurately. Designers can develop engaging simulation 

scenarios to successfully apply simulation testing on prototypes and, to the best of their ability, 

forecast how the physical items will behave in use. This method can quickly make adjustments and 

precisely identify design flaws, improving the design scheme effectively while avoiding time-

consuming testing and verification. 
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4 Case study-high speed train’s bogie 

4.1 Case background 

The bogie is the most important part of high-speed trains, as shown in Figure 5, which is 

coupled with multiple discipline domains such as mechanics, electricity, hydraulics, and control. It 

undertakes the tasks of carrying, guiding, damping, driving, braking, etc., thus, it is the fundamental 

part affecting the speed improvement of the train. As an illustrative example, the high-speed train’s 

bogie is a typical complex product system that has the characteristics of changeable operating 

environment and configurable requirements. The prevailing practice of high-speed train’ bogie 

design is to optimize design parameters by means of performance simulation. The DMU modelling 

method of a high-speed train’s bogie is traditionally based on a priori knowledge and experience 

about the product use cases. These methods aim at one standard design and have an assumed 

product use case scenario (e.g., considering a worst case of the condition) and fail to consider the 

various uncertainties associated with a product, which ignore the diversity of individual use 

scenarios under different operating environments. Enabled by the digital twin and a growing 

endeavor for data gathering and processing, this virtual product model is increasingly enriched with 

production and operation data. Therefore, it is of practical significance to empower high-speed train 

robust design by incorporating the previous data of product usage cases. 

4.2 Construction of high-speed train’s bogie DT 

The construction of a virtual product and a physical product for high-speed train’s bogie is 

described in Figure 5. As the environment is simply an object with track line. 

Geometric data and dynamic characteristic data are first gathered through product description 

and geometric measurements in order to develop the virtual product. The virtual product model's 

geometric and dynamic modeling both make use of the obtained data. Due to WebGL's support for 

both 3D modeling and dynamic modeling[53], the modeling tool was created based on these two 

modeling processes. As a result, it could merge these two components to create a singular virtual 

product model. Additionally, the parameterized model is used in the dynamic modeling process. In 

this model, the dynamics behavior of a virtual product model could be described by the meta-model.  

The physical product's construction is less difficult than that of the virtual one. As shown in 

Figure 5, the bogie is fitted with several sensors including acceleration, displacement, force, 

temperature, differential pressure, and velocity sensor. These sensors gather measurement data 

including force, temperature, speed, displacement and accelerated velocity , that could be used to 

advance the development of the virtual product model. 
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Figure 5 Physical product and virtual product model construction process  

Along with the real operational environment for each market sector, the system parameters of a 

vehicle's dynamics are also different. The environment and line conditions are some of the factors 

that have the biggest effects on the performance of high-speed trains, such as rain, snow, ice, 

temperature, horizontal wind, and humidity. Environmental factors influence the model inputs for 

high-speed train dynamics, whilst the line condition has an impact on the stability and security of 

the dynamics. The actual design parameters of each train bogie are not the same when in use 

because of the influence of uncertainties in the machining process and the degradation of design 

parameters along its operation and maintenance journey. Some design parameters are also changing 

over time as a result of wear and fatigue. The dynamic performance of a high-speed train with 

different parameter combinations is different under different instance operating conditions. In the 

next generation product design, how to fast obtain the set of bogie design parameters corresponding 

to the dynamic performance of a high-speed train under multiple instances of working conditions 

based on the current product operation data is a critical issue, under the influence of uncertain 

factors, in order to reduce the complexity of optimization design and to improve design efficiency 

and design robustness. 

4.3 The meta model of high-speed train’s bogie NDT 

Firstly, running twin data of 3 high-speed train’s bogie instances, 15 key design parameters as 
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the input X are identified by sensitivity analysis[54], 7 dynamic performance indicators response as 

the output Y, 4 service condition parameters as the system state parameter Q must be obtained. All 

of these parameters are listed in Table 1. 

Table 1 Parameter sets of NDT meta-model 

Parameter 
types 

Parameter Name (Unit) Range of parameters 

Key 
design 

parameter
s of 

bogie(X) 

x1- wheel diameter（mm） 790-920 
x2- Wheel set inner pitch（mm） 1350-1355 

x3- Wheelset quality（kg） 1200-2200 
x4- Rolling moment of inertia of wheelset（kg.m2） 500-750 
x5- Shaking moment inertia of Wheelset（kg.m2） 500-800 

x6- Longitudinal stiffness of primary spring（kN/m） 800-1150 
x7-Vertical damping of primary suspension（kN.s/m） 10-30 

x8- Longitudinal stiffness of axle box arm joints（MN/m） 5-15 
x9- Lateral stiffness of axle box arm joints（MN/m） 4-10 

x10- Lateral span of anti-snake shock absorbers（mm） 2400-2800 
x11- Longitudinal stiffness of air spring（kN/m） 150-400 
x12- Lateral stiffness of the air spring（kN/m） 150-400 

x13- Vertical damping of secondary suspension（kN.s/m） 20-60 
x14- Lateral damping of secondary suspension（kN.s/m） 30-50 

x15- Series stiffness of anti-snake shock absorbers（MN/m） 5-13 

Condition
parameter

s of the 
instance(

Q) 

q1- Running speed（km/h） 250-350 
q2- Curve radius（m） 5000-9000 
q3- super high（mm） 80-140 
q4- track irregularities Qin Shen spectrum, 

Beijing-Tianjin spectrum, 
Wu Guang spectrum 

Dynamic 
response 
performa

nce 
index(Y) 

y1- lateral stability≤ 2.5 
y2- vertical stability≤ 2.5 

y3- Axle vertical force≤（kN） 170 
y4- Axle lateral force≤（kN） 55.7 

y5- Derailment factor≤ 0.8 
y6- Wheel weight reduction rate≤ 0.65 

y7- overturning factor≤ 0.8 

(1) NDT meta-model construction 

A high-speed train dynamic response design meta-model is constructed by using the Bayesian 

optimization random forest algorithm (BO-RF). Each instance is given 100 sets of data samples, 

and the first 90 sets of data in the data samples are subjected to BO-RF training. In this sample, the 

key design parameters of bogie (X) come from design data and actual measurement data of the 

manufactured product; the condition parameters of the instance (Q) come from sensor monitoring 

data and line measurement data; and the dynamic response performance index is from calculated 

results of sensor monitoring data and part of simulation analysis data. The values of the 

hyperparameters of the optimized random forest model are shown in Table 2. In this way, the 

dynamic design meta-model under multi-instance working conditions is obtained by training. 
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Table 2 Hyperparameter values of random forest model under different instance conditions 

Random forest 
model 

number of 
trees 

Minimum number of 
samples required to 
split internal nodes 

Minimum number of 
samples required for 

leaf nodes 

maximum depth of 
tree 

instance 1  132  3 15 9 

instance 2  326  2 10 9 

instance 3  271  4 7 12 

(2) NDT metamodel accuracy verification 

Use the other 10 sets of sample simulation data of each instance to verify the accuracy of the 

optimized hyperparameter model for the three instance working conditions. If the accuracy meets 

the requirements, save the meta-model. If it does not meet the requirements, add sample points and 

retrain the meta-model until the accuracy meets the requirements; the average absolute error, mean 

square error and coefficient determination of the random forest meta-model accuracy verification 

indicators are used to analyze and verify the fitting accuracy of the BO-RF algorithm of the instance. 

The results are shown in Table 3. 

Table 3 BO-RF algorithm accuracy  
Instan

ce 
Erro

r 
Lateral 
stability 

Vertical 
stability 

Axle 
vertica
l force 

Axle 
lateral 
force 

Derail
ment 
factor 

Wheel weight 
reduction rate 

Overturni
ng factor 

Comprehe
nsive 

average 
instan
ce 1 

MAE 0.1285 0.0083 0.5627 1.26207 0.0161 0.0157 0.0058 0.2856 
MSE 0.0253 0.0001 0.5190 2.4573 0.0005 0.0004 0.0001 0.4290 

R2  0.9900 0.9979 0.9983 0.9949 0.9949 0.9986 0.9985 0.9962 
instan
ce 2 

MAE 0.1189 0.0076 0.4867 0.9542 0.8755 0.0198 0.0056 0.3526 
MSE 0.0314 0.0001 0.6023 2.1462 0.0006 0.0004 0.0001 0.3973 

R2 0.9895 0.9970 0.9984 0.9935 0.9854 0.9978 0.9982 0.9943 
instan
ce 3 

MAE 0.1265 0.0104 0.6587 1.0243 0.8942 0.0201 0.0089 0.3919 
MSE 0.0412 0.0002 0.7564 2.6541 0.0008 0.0006 0.0001 0.4933 

R2 0.9810 0.9899 0.9912 0.9886 0.9812 0.9823 0.9901 0.9863 

According to the data of instance 1, the comparison results in the MAE, MSE and R2 of the 

four common algorithms: back propagation neural network (BP), radial basis function neural 

network (RBF) and random forest (RF) and bayesian optimization random forest (BO-RF) are 

shown in Table 4.  

Table 4 Accuracy comparison table of four algorithms 
Algorit

hm 
Error Lateral 

stability 
Vertical 
stability 

Axle 
vertica
l force 

Axle 
lateral 
force 

Derail
ment 
factor 

Wheel weight 
reduction rate 

Overturni
ng factor 

Comprehe
nsive 

average 

BP  
MAE 0.2052 0.0293 2.3044 3.7450 0.0406 0.0668 0.0255 0.9161 
MSE 0.0583 0.0013 6.9383 22.2772 0.0032 0.0062 0.0009 4.1757 

R2  0.9770 0.9757 0.9775 0.9540 0.9688 0.9791 0.9818 0.9734 

RBF 
MAE 0.1519 0.0255 2.2714 2.2380 0.0358 0.0662 0.0217 0.6878 
MSE 0.0365 0.0010 6.8834 7.3647 0.0021 0.0059 0.0006 2.0499 

R2 0.9856 0.9814 0.9773 0.9848 0.9793 0.9782 0.9746 0.9801 

RF 
MAE 0.1281 0.099 0.9419 1.5271 0.0234 0.0242 0.0083 0.3804 
MSE 0.0272 0.0002 1.4552 4.1593 0.0011 0.0010 0.0001 0.8063 

R2 0.9892 0.9970 0.9952 0.9914 0.9886 0.9963 0.9967 0.9935 
BO-RF MAE 0.1285 0.0083 0.5627 1.26207 0.0161 0.0157 0.0058 0.2856 
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MSE 0.0253 0.0001 0.5190 2.4573 0.0005 0.0004 0.0001 0.4290 
R2 0.9900 0.9979 0.9983 0.9949 0.9949 0.9986 0.9985 0.9962 

The above table shows that the BO-RF algorithm has high accuracy, the mean absolute error 

and mean square error are relatively small, the percentage of the error is less than 5%, and the 

fitting determination coefficient are all close to 1, indicating that the random forest meta-model 

based on Bayesian optimization hyperparameter has good accuracy, and the training achieves the 

effect. The meta-model is used to replace the coupled simulation model under the three instance 

conditions of the high-speed train, and the meta-model can be used for the multi-objective 

optimization design of new generation product.  

4.4 NDT-driven new generation bogie design 

The design of the new generation high-speed train’s bogie should have higher robustness and 

adaptability, which is able to meet the needs of operation in different working conditions. In the 

NDT-driven new generation product design, the NDT model is established based on the twin data 

of multiple instances of the existing products. The optimal design parameters of the new generation 

product are solved by constructing a multi-objective optimization model from multi-instance 

fusions. In this model, initial 15 key design parameters of bogie as input design data for setting up 

the optimization design model, the 7 dynamic response performance indexes as optimization 

objectives, and a range of performance metrics as constraints. The obtained optimal design 

parameter solutions can make the new generation bogie meet the optimal dynamic performance 

indicators under the existing three case conditions (as shown in the table 5).  

Table 5 Typical service conditions of the instance 
Condition Running speed（km/h） Curve radius (m)  Super high(mm) Track irregularities 

Condition 1 250 5000  80 Qin Shen spectrum,  

Condition 2 300 7000  100 Beijing-Tianjin 
spectrum 

Condition 3 350 9000  140 Wu Guang spectrum 
 

A multi-objective optimization model of three instance fusions is constructed according to 

formulas (9) and (10). Here we believe that the importance of the three instance conditions is the 

same, and the seven performance indicators of a single instance condition are all important 

indicators of safety and ride quality, which can also be regarded as equal in this optimization 

problem. If they are equally important, then their weight coefficients can all take the same value, 

and here the weight coefficient values can all take 1. The single-objective optimization is carried 

out by using the genetic algorithm, and the ideal value of each single-objective under the three 

working conditions is calculated separately. The specific data are shown in Table 6. 
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Table 6 ideal point value of three instance operating conditions 

Ideal point value for 
case condition 1 

11

*y  
12

*y  *
13y  

14

*y  *
15y  *

16y  *
17y  

2.03 2.13 77.67k
N 14.24 kN 0.1

2 0.28 0.27 

Ideal point value for 
case condition 2 

21

*y  
22

*y  *
23y  

24

*y  *
25y  *

26y  
27

*y  

1.98 2.03 75.56 kN 15.65 kN 0.13 0.27 0.2
9 

Ideal point value for 
case condition 3 

31

*y  *
32y  *

33y  
34

*y  *
35y  *

36y  
37

*y  
2.12 2.19 79.54kN 16.34kN 0.18 0.29 0.30 

 

The ideal point values in Table 6 are substituted into the optimization mathematical model 

established in formula (10), and the improved NSGA-II genetic algorithm is used for optimization 

calculation. Given a certain number of variables, the population size with the smallest convergence 

algebra is generally 4 to 6 times the number of design variables. Since the search convergence time 

of the algorithm is largely affected by the expansion of the population size, to obtain the optimal 

solution in a short time, we should not blindly select an excessively large population size. The 

initial population number in the multi-objective optimization in this paper is 80, the number of 

evolutionary iterations is set to 200, the crossover factor is 0.9, the cross-distribution index is 20, 

and the variation distribution index is 100. The Pareto optimal solution set obtained through multi-

objective optimization is finally obtained. 80 sets of non-inferior solutions for the design 

parameters of high-speed trains are obtained. 

To pick the ideal parameter set from the Pareto solution set as the parameters for the next 

generation of product design, designers or customers can select the required design parameter set 

from the solution set based on their preferences. In this study, the TOPSIS approach[55] is applied 

to quantitatively rank 80 non-dominated solutions, and the best 5 groups of solutions are chosen 

based on the ranking. The lateral and vertical stabilities are the second-level evaluation indicators of 

ride quality. The axle vertical force, axle lateral force, derailment factor, wheel weight reduction 

rate and overturning factor comprehensive average are the second-level evaluation indicators of 

safety. Safety is the basic requirement of high-speed train operation. Therefore, based on design 

experience and subjective preferences, the relative weights for ride quality and safety are set at 0.3 

and 0.7, respectively. The decision matrix and normalization matrix are constructed based on 80 

non-dominated solution set. Then, the positive and negative ideal solutions are constructed. 

Afterward, the positive and negative ideal solutions are constructed, and the Euclidean distance 

method is used to calculate the distance between each non-dominant solution and the positive and 

negative ideal solutions, as well as the relative closeness to the positive ideal solutions. The group 

of parameters with the maximum relative closeness is regarded as the best solution. From the 80 
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sets of non-inferior solutions, the selected 5 optimal parameter sets are shown in Table 7. The 15 

key design parameters of DMU are the design result of new generation bogie. 

Table 7 The optimal 5 groups of design parameter values for the 15 key design parameters 

No.  Parameter name Unit Parameter 
symbol 1 2 3 4 5 

1 wheel diameter mm 1x  803.32 815.43 825.37 855.47 860.36 
2 Wheel set inner pitch mm 2x  1351.53 1352.17 1352.76 1354.64 1354.82 
3 Wheelset quality kg 3x  1842.34 1876.56 1934.57 1980.42 2010.42 

4 Rolling moment of 
inertia of wheelset kg･m2 4x  537.12 575.31 590.45 620.81 675.32 

5 Shaking moment inertia 
of Wheelset kg･m2 5x  528.46 580.34 601.23 641.38 690.53 

6 Longitudinal stiffness of 
primary spring kN/m 6x  984.97 827.54 969.73 982.37 931.40 

7 Vertical damping of 
primary suspension kN.s/m 7x  15.32 18.43 20.56 13.74 21.58 

8 Longitudinal stiffness of 
axle box arm joints MN/m 8x  6.83 7.24 7.95 9.47 10.24 

9 Lateral stiffness of axle 
box arm joints MN/m 9x  4.51 6.43 7.54 8.55 7.82 

10 Lateral span of anti-
snake shock absorbers mm 10x  2521.34 2671.46 2643.21 2540.42 2489.65 

11 Longitudinal stiffness of 
air spring kN/m 11x  193.34 183.99 202.04 194.47 192.81 

12 Lateral stiffness of the air 
spring kN/m 12x  195.64 199.74 205.65 199.38 210.45 

13 Vertical damping of 
secondary suspension kN.s/m 13x  26.43 33.65 28.46 30.66 36.84 

14 Lateral damping of 
secondary suspension kN.s/m 14x  36.31 38.48 40.36 42.53 39.65 

15 Series stiffness of anti-
snake shock absorbers MN/m 15x  7.83 8.42 9.52 8.94 9.72 

4.5 Results and discussions 

The 5 sets of design parameters are substituted into the simulation model of the high-speed 

train system under 3 different working conditions for dynamic simulation calculation, and the 

corresponding 7 dynamic performance index values are obtained from the simulation. The values 

are compared with the dynamic performance index value corresponding to the initial design data of 

a certain type of CRH vehicle. The specific data comparison is shown in Table 8. In order to 

intuitively compare the dynamic performance of a certain type of CRH vehicle with the optimized 

design, there are 5 sets of solutions corresponding to the dynamic performance. 

Table 8. Performance comparison table between the optimized solution and the original parameters of a 
certain type of CRH 

Working 
conditions Performance 

A certain 
type of 
CRH 

1 2 3 4 5 



 第 49 卷第 6 期期 26 

Instance 1 y1 2.35 2.32 2.11 2.28 2.26 2.31 
y2 2.07 1.98 2.03 2.06 1.99 2.10 
y3 95.81 78.52 78.55 73.65 76.82 78.95 
y4 25.15 14.15 12.88 13.54 13.95 16.53 
y5 0.21 0.18 0.15 0.19 0.15 0.18 
y6 0.32 0.19 0.19 0.22 0.26 0.28 
y7 0.35 0.25 0.26 0.26 0.28 0.31 

Promotion None 21.56% 24.84% 19.89% 19.91% 12.91% 
Instance 2 y1 2.20 2.18 2.22 2.21 2.19 2.12 

y2 2.01 1.99 2.05 2.02 1.99 2.07 
y3 78.30 75.43 79.65 80.23 74.62 72.65 
y4 22.14 19.26 21.12 21.65 17.62 21.13 
y5 0.18 0.17 0.19 0.18 0.18 0.21 
y6 0.22 0.19 0.21 0.21 0.23 0.17 
y7 0.26 0.24 0.22 0.23 0.28 0.25 

Promotion None 6.49% 2.05% 2.13% 2.05% 3.19% 
Instance 3 y1 2.36 2.20 2.25 2.28 2.30 2.10 

y2 2.21 2.02 2.06 2.07 2.11 1.99 
y3 97.31 81.65 82.36 80.43 89.57 78.64 
y4 29.98 24.31 25.65 24.84 26.34 20.34 
y5 0.37 0.25 0.29 0.28 0.30 0.22 
y6 0.41 0.29 0.30 0.29 0.33 0.24 
y7 0.43 0.31 0.31 0.33 0.35 0.27 

Promotion None 20.01% 16.80% 17.29% 12.03% 27.36% 
    

According to the simulation analysis comparison of five optimization schemes under three 

different working conditions, the dynamic performance indicators of the five groups of design 

parameter sets not only meet the requirements of dynamic design standards, but also have been 

improved compared with the original design scheme. The new generation high-speed train’s bogie 

has higher robustness and adaptability resulted from the NDT driven design method, which meets 

the needs of operation in different conditions. The result shows that NDT can enable the 

establishment of a more precise approximated model from the data and information not only related 

to a single product-in-use, but also to multiple physical products’ performances and behaviors 

under a wide range of application scenarios in the physical world. Thus, it is proved that NDT-

driven new generation product design method is feasible. 

From the comparison results with other 3 algorithms in section 4.3, our Bayesian optimization 

random forest algorithm has high accuracy. Now, the new generation high-speed train’s bogie is not 

built yet, thus, here testing method is based on the simulation analysis comparison of five 

optimization schemes under three different working conditions. Although there are some errors 



月 2013 年 3 27 

between the simulation results and the actual physical experiments, but the simulation results can 

prove that our method is feasible. Further physical verification is required in the future for 

evaluating its effectiveness. 

5. Discussion on Nominal Digital Twin and Digital Twin Aggregate  

As pointed by Michael Grieves in [14], the “twin” metaphor makes some believe that “digital 

twin exists ONLY after there is a physical product” although it is fallacy. In essence, Digital Twin 

model focused on the information about a product being populated and consumed from a logically 

centralized source across the four phases of a product’s lifecycle: create, build, operate/sustain, and 

dispose phases. The DT does exist prior to a physical product and it may just has a different name 

such as digital model and the digital design [14]. Along a single product lifecycle from the Create, 

Build, Operate/Sustain to Dispose, Michael Grieves defined three types of Digital twin at the 

Macrolevel namely Digital Twin Prototype (DTP), Digital Twin Instance (DTI) and Digital Twin 

Aggregate (DTA) [14]. DTP is defined in Create (design) phase and used in all phases, DTI is 

defined in Build phase and used in the this and later phases, and DTA is defined and used in 

Operate/Sustain stage.  The key differentiator of whether a digital model and associated information 

is a digital twin in Create phase is that it is intended that this model become a physical product and 

that its physical counter is realized” [14].  

The paper [56] authored by Michael Grieves and John Vickers in 2017, only defines two types 

of digital twins in terms of DTP and DTI. DTA is defined in [14] referring to all the products that 

we did build. Its relationships with DTIs are clear, but its position in Sustain/service phase is not 

very clear.  Based on our understanding, because each DTI in the service phase, the data goes both 

ways from a physical product to its virtual model or vice versa. So, each DTI can have a different 

data set related to its behaviour, performances, running environments and service scenarios. 

Aggregating all DTIs together can provide a big picture of the current product behavior and 

performance in general by synthesizing all DTIs. For example, we can aggregate information over a 

range of virtual and physical systems (twins) to correlate specific state changes with the high 

probability of future failures [56] through synthesizing the failure prediction model. But where this 

aggregating action could be embedded is not clear.  

The DTP has all the information that will be needed to describe and produce a physical version 

that duplicates or twins the virtual version [56]. The information associated with a DTP usually 

includes but not limited to, the product requirements, CAD models (Fully annotated 3D models), 

Bill of Materials (BoM), behavioral simulations and any other information that would be needed to 

fully describe this new product. In addition, DTP would also include information needed to build 

this new product such as Bill of Process, Bill of Services, Bill of Manufacturing Systems, quality 
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control information, and manufacturing simulations linking AI and M&S [14]. With reference to 

this criterion, not all digital models produced in the Create phase can be named as a digital twin. 

The relationships between digital twin and other digital models are not clear indicated. 

Thus, in this paper, we look at the Create (Design) phase on a micro level and define the term 

“Nominal Digital Twin” (NDT) in the design phase prior to a physical product (see Fig 1). First, the 

NDT term indicates it is a DTP type of digital twin prior to a physical product by the term 

“nominal”; second, it shows a way of how to construct a NDT from digital Mock-Up models in 

sequence as shown in Fig 1, from As-defined, As-designed to As-manufactured prior to a physical 

product and intent to link to physical products late; third, it integrates aggregating all DTIs action 

into itself clearly demonstrating how to link individual product DTs (or DTIs) back to NDT by 

synthesizing DTIs for updates of NDT in right time and supporting next generation product design 

through the updates of early generational digital Mock-Up models. In this sense, NDT is a hybrid 

DT of DTP and DTA, but positioned as a DTP clearly. 

6 Conclusions and future work 

Motivated by the core idea of developing new generation product based on previous product 

DTs, we proposed an NDT approach, which is significant for acquiring the robust and optimal 

DMU of the new generation product. Based on the proposed NDT concept, a new closed-loop 

product design approach based on NDT is presented as a development framework to gain the 

optimal solution, and to guide the DMUs modelling.  

Our case study on a high-speed train’s bogie design shows that (1) the proposed NDT concept 

and associated design approach are feasible and applicable in new generation product design and (2) 

the proposed meta-model and optimization model are useful tools to realize the effective modelling 

and design. 

Our future work will concentrate on the following two aspects: 

(1)  How to construct the NDT model to support design decision-making with uncertainties 

development in the closed-loop iterative design framework.  

(2) How to use the NDT to guide individual instantiated DTs in manufacturing, use, and 

maintenance stages to learn from each other and have a collective learning capability to 

support application scenarios and conditions-based smart product performance. 
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