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Abstract— Background—Photo-realistic terapixel visualization is computationally intensive and to date there have been no 
such visualizations of urban digital twins, the few terapixel visualizations that exist have looked towards space rather than earth. 
Objective—our aims are: creating a scalable cloud supercomputer software architecture for visualization; a photo-realistic 
terapixel 3D visualization of urban IoT data supporting daily updates; a rigorous evaluation of cloud supercomputing for our 
application. Method—We migrated the Blender Cycles path tracer to the public cloud within a new software framework designed 
to scale to petaFLOP performance. Results—we demonstrate we can compute a terapixel visualization in under one hour, the 
system scaling at 98% efficiency to use 1024 public cloud GPU nodes delivering 14 petaFLOPS. The resulting terapixel image 
supports interactive browsing of the city and its data at a wide range of sensing scales. Conclusion—The GPU compute 
resource available in the cloud is greater than anything available on our national supercomputers providing access to globally 
competitive resources. The direct financial cost of access, compared to procuring and running these systems, was low. The 
indirect cost, in overcoming teething issues with cloud software development, should reduce significantly over time. 

Index Terms—Data Visualization, Internet of Things, Scalability, Supercomputers  
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1 INTRODUCTION

S we gather increasing amounts of data about our 
urban environment it is important to present this in 

informative, engaging and accessible ways so that the 
widest possible set of stakeholders have the potential to 
see the data. The Newcastle Urban Observatory [1] has 
been collecting IoT sensed environmental data about the 
city of Newcastle-upon-Tyne for over three years, gather-
ing more than nine hundred million data records to date. 
As is common to many data platforms the rate of data 
collection is significantly faster than the rate at which hu-
mans can comprehend and learn from the information the 
data carries [2]. Therefore, we explore how we can present 
descriptive statistics, such as hourly sensor averages, in a 
realistic 3D visualization of the city and do so at a range of 
geographic scales.  

Terapixel images are images that contain over one tril-
lion pixels and, within the right toolset [3], provide an in-

tuitive, fluid user experience where the viewer can see an 
overview of the whole image or zoom into incredible de-
tail. In this article we demonstrate that we can zoom in 
from an overview of just over one square kilometre of the 
city of Newcastle-upon-Tyne to see detail within a single 
room in an office or a house with one pixel in the image 
representing an area of 1.4 mm2 in the real world. Because 
viewing a terapixel image depends only on image display 
capabilities any web browser can display it, making tera-
pixel images accessible on a wide range of thin clients. 
This opens access to high quality, high detail visualizations 
without needing an expensive, in cost or energy use [6], 
client-side 3D graphics engine. To the best of our 
knowledge we present here the first terapixel visualization 
of IoT data within a 3D urban environment. 

To visualize the city and its data we have chosen an ad-
vanced path-tracing renderer that is more typically used 
for cinematic and architectural rendering. We selected 
Cycles, from the Blender toolset [4], because of its high 
quality physically based lighting simulation calculations. 
This has allowed us to achieve an elevated level of realism 
in our rendering of the city and bringing with it graphical 
options that are not available in visualization tools that 
use standard hardware rendering libraries.  

The combination of high-quality rendering and tera-
pixel imaging can be an attractive one for users and al-
lows us to explore new ways of visualizing urban IoT data 
within its city context. However, while the end user experi-
ence is compelling there is a significant computational 
cost to producing a high quality terapixel image. To ad-
dress this issue, we propose the use of supercomputer 
scale systems in the cloud. The focus of this article is the 
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design, deployment and rigorous evaluation of a scalable 
cloud rendering architecture for urban data visualization. 

2 BACKGROUND 
We briefly review three background topics: urban data 
visualization, scalable computing in the cloud, and exist-
ing architectures for distributed and cloud rendering. 

2.1 Urban Data Visualization 
Urban data visualization brings together large 3D models 
of cities and countries with real time and historical data 
from many sources including IoT sensing devices [5]. The 
concept of a digital twin for observing, exploring and pre-
dicting urban behavior is rapidly gaining ground [6]. Visu-
alization methods directly support the Gemini principle [7] 
of creating insight into the data in a digital twin.  

The Royal Society [8] proposes that for data to be 
trustworthy it needs to be made intelligently open, in par-
ticular, to be accessible, intelligable and assessable. Our 
investigation of terapixel imaging explores how the acces-
siblity and intelligibilty of urban IoT data can be improved, 
potentially leading to better assessability of its reliablity, 
meaning and value. To achieve this our terapixel 3D urban 
visualization of Newcastle’s IoT data has five goals [9] aim-
ing to be: 

Truthful: to show accurate statistical data about the city, 
to scale and situated within its spatial context.  

Functional: to create an interactive scalable visualiza-
tion that works across platforms with low overhead. 

Beautiful: to use the highest quality rendering tools, 
applying cinematic quality production techniques. 

Insightful: to reveal new insights across scale about the 
urban environment in the city of Newcastle-upon-Tyne. 

Enlightening:  accessible to the viewer so they are able 
to gain a deep comprehension of the data. 

Terapixel images have been previously used to visualize 
astronomical observations [10] while multiple gigapixel 
images have been used for visualizing cosmology simula-
tion outputs [11]. We aim to apply terapixel imaging to 
look towards, instead of away from, Earth and to present 
observations about one region on Earth in detail.  

 
2.2 Scalable Cloud Computing 
Public cloud services have started to offer as IaaS (Infra-
structure as a Service) an increasing amount of GPU com-
pute capacity, this enables supercomputer scale compute 
performance to be deployed, utilised and released on-
demand. Current examples include the Azure N-series [12] 
and AWS EC2 Elastic GPUs [13].   

In the cloud, as with any parallel system, the same clas-
sical laws bound a system’s scalability. Amdahl’s law [14] 
can be summarized as: any one parallel computation is 
limited in scalability as the number of nodes n increases 
by the fraction of the problem that cannot be parallelized. 
If p is the parallel fraction, and f the serial fraction, then 
speedup S is given by: 

 ( )
1

S n
p

f
n





   (1) 

We need to take care using the cloud that additional 
management services don’t add undue serial overhead 
and limit our best performance. Even at f = 0.1% the 
overhead will limit our best speedup to 506 for n = 1024 
nodes. 

The Gustafson-Barsis’ law [15] reconsidered how paral-
lel computers are used in practice and defined scalability 
in relation to problem size, arguing that the problem size 
is always scaled to fill the compute capacity:  

 
( ) ( 1 )S n n f n     (2) 

 
In the rendering approach we have chosen here the 

problem can scale to fill the largest machine we have 
available. As a result, we would expect to see the Gus-
tafson-Barsis law holding if the problem size remains large 
enough. We should therefore see efficient linear scaling as 
we add more compute nodes. Even so there is a limit to 
the compute size of our problem and at that point 
Amdhal’s law will ultimately define the bounds of scalable 
performance for us. 

In later work Gustafson [16] argued the for use of ends-
based performance measures as well as pure computa-
tional metrics. As our interest here is application driven as 
much as system driven we also consider the following 
from Gustafson's proposed ends-based metrics: 

 Time to compute the answer. 
 Completeness of the answer. 
 Maximum feasible problem size. 
 System reliability. 
 Performance divided by the system cost. 
We also add an additional application metric, future 

scaling, which provides a prediction of how far into the 
future it will be before the system performance we 
achieve on a supercomputer today might be available on 
everyday desktop workstations. 

2.3 High Performance Visualization Systems 
Many distributed and parallel rendering system architec-
tures for High Performance Visualization (HPV) have been 
proposed as new High Performance (HPC) and High 
Throughput (HTC) platforms have appeared [2]. 

From the earliest days of HPV systems, rendering has 
often been thought of as ideally parallel even though this 
is not the case when geometry data sizes exceed local 
memory or network transfer bandwidth [17]. Nonetheless, 
rendering is often a good test of new hardware perfor-
mance since it is capable of scaling to follow Gustafson’s 
law, absorbing all available compute resource. This is par-
ticularly the case for photorealistic and physically-based 
path tracing algorithms whose performance is dominated 
by floating point calculations.  

Remote HPV systems can be categorised as being 
send-data, send-geometry or send-image [2].  Send-data 
systems assume a local GPU at the client and the server 
sends a subset of the application data to be converted to 
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geometry and rendered locally into an image. Send-
geometry systems convert the data to geometry at the 
server and send just geometric and material data to the 
client to be rendered. In both cases the client needs sub-
stantial network, and compute resources, and in the worst 
case as the data size grows the client-side resource de-
mand is unbounded. 

The third approach send-image, and the one we take in 
this project, is where the geometry is generated and ren-
dered on the server and only the image is sent to the 
client. The key advantage is the maximum image data 
required at any one time is bounded by the fixed number 
of pixels on display rather than the unbounded data or 
model geometry. This bounds the network bandwidth 
needed between server and client. 

A similar approach to ours was described by Chen et al 
in [18] which generalises previous image-based rendering 
systems such as QuickTime VR. Chen uses a multiresolu-
tion tiled image as the output format and serves this 
from an http server to viewers running in client browsers. 
Our work differs in that we aim to use the public cloud to 
render the terapixel images and to parallelize all the op-
erations needed to output the multiresolution tiled image 
format in addition to the rendering operations. 

One solution to our visualization problem could be to 
use a render farm, both private and public render farms 
exist and render services are available in the cloud. How-
ever, currently these don’t offer all the functionality we 
need to build an end-to-end terapixel solution, they are 
primarily tuned to production animation rendering. 
 
2.4 Summary 
We aim to generate high quality, terapixel urban data 
visualizations that are rendered by a system that scales to 
efficiently use as many compute nodes as are available. 
We have chosen to design this as a send-image system 
architecture so that thin-clients are as capable of display-
ing the visualization as fat-clients with the aim of sup-
porting wide accessibility to the results of advanced visu-
alization methods.  

3 SYSTEM ARCHITECTURE 

We have previously discussed [19] how a send-image 
architecture for remote cloud rendering, where the ren-
dering is server-based and a pixel-stream is sent to the 
client, has important advantages including 1) Decoupling 
the task of display from the computationally complex task 
of rendering, enabling the use of thin-clients to view 
complex visualizations, 2) Limiting the maximum band-
width needed to the client display device, which is other-
wise unbounded in thick-client solutions. The following 
details the requirements and the design of such a system 
for terapixel visualization. 

 
3.1 The Visualization 
As shown in Fig. 1 we used a 1.28km x 1.28km 3D map of 
central Newcastle-upon-Tyne as the context for our visu-
alization. This defined the geographic boundaries of the 
visualization and the IoT sensors we included. Since a ter-

apixel image consists of 220 * 220 or (1,048,576)2 pixels this 
means that one pixel in our terapixel image represents 
approximately 1.2mm x 1.2mm in the real world. This pro-
vides the ability in a single image to zoom in from city 
scale to an area of about the size of desk in a room in a 
building. This represents a zoom factor of approximately 
512x on a full HD display allowing users to view data in 
the city at a wide range of scales. 

Set within this map are glyphs representing the loca-
tion of Urban Observatory IoT sensors [1] around the city, 
the sensors are situated both externally in the city and 
internally within the Urban Sciences Building. For the pur-
poses of this visualization we use an arbitrary day’s tem-
perature values, averaged over one hour for each of the 
sensors. The average temperature value is represented as 
a solid colour at the centre of each glyph, though not ob-
vious in a single still image the glyphs automatically orient 
themselves to face the camera and rescale at preset zoom 
levels to maintain a reasonable size. Some of the glyphs 
represent sensors that are physically as close as 100mm in 
the real world. 

 

 
Fig. 1. The terascope image of Newcastle-upon-Tyne, the inset im-

ages are zoomed in views illustrating the internal sensors in the 

Urban Sciences Building, glyph colours represent the average tem-

perature at each sensor over one hour, glyphs are rescaled as the 

viewer zooms in so that they retain a reasonable size in the image. 
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3.2 Technical Requirements 
One terapixel image requires approximately one terabyte 
of storage, something that is not currently easy to down-
load as a single image file to most clients. Instead, we 
manage image viewing as a streaming process using a 
client-side image streaming tool, the krpano Viewer [3]. 
This requires the image to be stored on the server in a 
hierarchy, with each layer of the pyramid a complete im-
age, tiled into 512x512 image tiles. The properties of each 
level in the pyramid are shown in Table 1 where the side 
length of each layer doubles with depth in the pyramid. 

To create the image pyramid, we could render each 
level individually or render just the highest resolutionlevel 
12 and sub-sample this to calculate all the lower levels in 
the hierarchy. However, we adopt a compromise where we 
render levels 12, 8 and 4 and subsample these levels to fill 
in each set of three intermediate levels. This saves total 
rendering time compared to rendering every level and 
reduces compression errors in the lower level images 
compared to repeatedly subsampling the full image. This 
approach also allows us to render features such as the IoT 
sensor glyphs at different scales in the image for the three 
key hierarchy levels, keeping the glyphs a more appropri-
ate size as the viewer scales through the wide zoom range 
in the image. 

To calculate intermediate levels in the image pyramid 
from rendered levels we can apply a general smoothing 
function [20]. Any layer l-1 can be generated from a high-
er resolution level l by sub-sampling using a kernel 
weighted filter such that a sub-sampled pixel Gl-1(i,j) is 
related to the pixels in a higher resolution image by: 

 

1 ( , ) ( , ) (2 , 2 )l l
m n

G i j w m n G i m j n                (3) 

where the weighting function w(m,n) is chosen to balance 
between the speed of computation and quality of the 
sub-sampled layers.  
 

3.3 Design 
The computation we need to undertake is now defined. To 
generate a one terapixel image we need to compute an 
image pyramid of 5,592,405 image tiles.  Every fourth lev-
el in the pyramid will be rendered directly and the remain-
ing intermediate levels will be computed by subsampling 
the rendered layers. 

As shown in Fig. 2 we group image tiles for rendering 
efficiency render into tasks of 4096x4096 pixels which are 
then split and subsampled as required into tiles. We 
therefore need to compute a total of 65,703 render tasks. 
For the examples here, our entire 3D city model is as-
sumed to be replicable to every compute node while each 
task definition has a relatively small payload defining the 
4Kx4K region to be rendered. The result is an almost ide-
ally task parallel application, with little communication 
overhead compared to compute demand. This makes it 
suitable as a starting point for testing the scalability of 
cloud supercomputing. 

4 SYSTEM IMPLEMENTATION 
In order to implement a highly scalable parallel version of 
the data flow architecture in Fig. 2 we used a combination 
of Microsoft Azure tools and our own application soft-
ware. 
 
4.1 Scalable public cloud framework 
We previously implemented a rendering framework for 
urban IoT data that was designed to update images from 
live IoT data using a mixture of public and private cloud 

 

Fig. 2. The data flow for the compute tasks required to generate a 
single terapixel image pyramid. Blender is used to render the imag-
es and Pillow is used to generate the krpano image tiles. 

TABLE 1 
TERAPIXEL IMAGE PROPERTIES 

Pyramid 
level 

Image side 
length 

(pixels) 

Total number of 
pixels at this 

level 

Number of 
512x512 

tiles 

Tile side 
length in 
the real 

world 
(mm) 

12 1048576 1099511627776 4194304 625 
11 524288 274877906944 1048576 1250 
10 262144 68719476736 262144 2500 

9 131072 17179869184 65536 5000 
8 65536 4294967296 16384 10000 
7 32768 1073741824 4096 20000 
6 16384 268435456 1024 40000 
5 8192 67108864 256 80000 
4 4096 16777216 64 160000 
3 2048 4194304 16 320000 
2 1024 1048576 4 640000 
1 512 262144 1 1280000 

 
The terapixel image is a hierarchical pyramid of 512x512 pixel tiles, 
this supports interactive panning and zooming for the image. 
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resources [21]. This was capable of rendering images up 
to UHD (3840x1920) resolution and was used to update 
images of IoT data every few minutes throughout the day. 

 
Fig. 3. Cloud supercomputing system architecture, constructed over 
Azure™ public cloud IaaS. 

The size of the computational task for the terapixel im-
age was too large for our private cloud. We therefore cre-
ated the terapixel system using public cloud components. 
To create a scalable frame work for the computation we 
used the following components as shown in Fig. 3: 
 
 We inject the 65,793 rendering tasks into an Azure 

Batch task queue and allow the queue to distribute 
the tasks between the pool of compute nodes. It also 
manages node failure and replacement. The tasks are 
added to the queue using Azure Functions, a server-
less service that runs single scripts on-demand. The 
script creates three separate jobs, one each for levels 
4, 8 and 12 in the image pyramid, and then creates 
the render tasks for each job. Each task contains the 
data required to start Blender when run on a node. 

 Compute nodes are packaged as an Azure Managed 
Image that runs the Blender and Pillow tools with the 
whole city model. A pool of compute nodes is then 
requested manually, using the managed image as a 
template. The number of compute nodes is varied to 
adjust for the performance data collection. Note that 
compute nodes can, and do, fail during execution and 
Azure should seamlessly swap these back in. 

 Azure Blob Storage provides a scalable solution to 
storing the 5,592,405 output image tiles in a folder 
hierarchy suitable for the krpano viewing tool. By de-
fault Blob Storage has an http server interface suita-
ble for serving the client-side krpano app with the 

image tiles it requests when a user is viewing the im-
age. 
 

While much of the system underpinnings are managed 
by Azure we still had to run custom health checks on the 
nodes to ensure that drivers versions were correct and 
that the GPU was still accessible to the Blender. On some 
occasions we found that driver issues arose that required 
action to update and reboot the machine. Healthchecks 
and required actions were carried out using Ansible [22]. 
Ansible is an IT automation engine, which allowed us to 
run arbitrary commands across our batch pool through an 
SSH connection. Ansible requires the creation of an inven-
tory in order to connect to a pool of machines. This inven-
tory was generated using the Azure Batch API [23]. 
 
4.2 Blender Cycles Rendering 
Blender Cycles is an unbiased physically-based path trac-
ing engine which creates an image by tracing light rays 
backwards from the camera through a scene. Because it 
simulates realistic effects such as soft shadows, caustics 
and glossy surfaces it can require very significant compute 
times. However, also because it supports these effects it 
allows the use of advanced cinematic visualization effects 
in an urban smart city visualization.  

There are a considerable number of optimisation and 
tuning parameters in Blender Cycles, and we ran a series 
of trials with the aim being to optimize image quality and 
compute time. In particular for GPU supported execution 
we set the number of samples per pixel to be 20, the Cy-
cles tile size to be 256x256 and the post-rendering image 

denoising radius to be 5. This resulted in a single 4Kx4K 
task rendering time of approximately 150 seconds on the 
target hardware described below. 
 
4.3 Pillow for Image Splitting and Sub-sampling 
The output from Blender for each render task is a 4kx4k 
image and this needs to be split into 512x512 tiles and 

TABLE 2 
TERAPIXEL TASK PROPERTIES 

Hierarchy 
level 

4kx4k pixel image 
rendering tasks 

512x512 
pixel output 
tiles 

Estimated storage 
for JPEG coded 
tiles in kB 

12 65536 4194304 436207616 
11  1048576 109051904 
10  262144 27262976 

9  65536 6815744 
    

8 256 16384 1703936 
7  4096 425984 
6  1024 106496 
5  256 26624 
4 1 64 6656 
3  16 1664 
2  4 416 
1   1 104 

Totals 65,793 5,592,405 581,610,120 

One terapixel image requires 65,793 task computations generat-
ing 5,592,405 image tiles in 12 hierarchical levels requiring ap-
proximately 0.54 tB of Azure Blob™ storage, levels 4, 8 and 12 
are computed, other levels are downsampled from these results 
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subsampled to form the tiles for the three lower resolu-
tion layers beneath each rendered layer in the pyramid, as 
described in Table 2. 

To retain image quality for the splitting process Blender 
is requested to output a lossless PNG format image. This 
is then passed to a python script calling the Pillow API 
which both splits the 4Kx4K image into 512x512 tiles and 
subsamples it to form the lower resolution layers using 
the resize function. All 512x512 tiles are stored using JPG 
to save storage space and client transfer bandwidth. 
 
4.4 Performance metric collection 
To understand the performance of the system we de-
signed into the architecture a series of performance met-
ric data collection points. These generate typed, timed 
messages at key points in the computation, for example 
rendering start and end points, that are stored in a dedi-

cated database. Table 3 summarises the subset of metrics 
we collect that are most relevant to this article. 

The performance capture system is built on software 
commonly refered to as the ELK stack. ELK being a com-
bination of Elasticsearch, Logstash and Kibana. Elas-
ticsearch is a distributed, RESTful search and analytics en-
gine [24]. Logstash is a data processing pipeline that in-
gests data from multiple sources, transforms it, and sends 
it on to a storage system. Kibana is a visualization tool for 
exploring data stored in Elasticsearch. 

Data stored in Elasticsearch is arranged into indexes. 
Indexes are collections of data points that share the same 
data model. The Terascope performance metrics use three 
different indexes; render, gpu and metricbeat. All the data 
stored in each of these indexes is timeseries in nature – 
the value of metric X at time Y was Z. The render index 
stores all the render events as an image is generated on 
the node. The GPU index stores all the performance met-
rics that can be interegated from the GPU hardware for 
every node in the entire pool. GPU data is captured by 
logstash every second and sent to the Elasticsearch GPU 
index. Finally, the metricbeat index is populated using a 
logstash tool called metricbeat. Metricbeat captures data 
about the state of all the hardware (with the exception of 
the GPU) on each of the nodes. There are many granular 
details to this data but broadly it captures information 
about the state of the CPU cores, memory, disks and net-
work.  

These metrics complement the metrics generated by 
Azure which don’t record at the same level of granularity. 

This approach also allowed us to compare our own 
measures of run time with Azure’s measures providing a 
way to track any overhead introduced by the Azure 
framework. 

The total runtime system load for our metrics collection 
is not significant compared to the overall compute load 
and each full terapixel image run generates around 65 
Gigabytes of performance data. 

5 EVALUATION 
 
5.1 Characterising the tasks 
The computation of a terapixel image using Blender Cy-
cles should be ideally parallel since we can, in the current 
scene replicate, the model geomery on every node. The 
main communications load is the output to Azure Blob 
storage of a 4Kx4K image divided into 512x512 tiles every 
task, roughly every 150 seconds. A characterisation of the 
tasks we need to compute is in Table 3. 

 
5.2 Choosing a cloud virtual machine 
Current public cloud offerings present a range of prede-
fined virtual machine specifications to choose from and a 
number of possible global locations. For the compute 
nodes in the first set of evaluation runs reported here we 
choose a lower end virtual machine to control our costs, 
the Azure NC6 node. This consists of an Intel Xeon E5-
2690v3 CPU, a K80 NVIDIA GPU with 56Gbytes of memory 
and 380Gbytes of SSD disk space. Each NC6 virtual ma-
chine however shares the CPU and the GPU with a second 
virtual machine and has half the CPU cores and one half 
of the K80 GPU card. This results in each NC6 node having 
six CPU cores and one GPU. Therefore, the theoretical 
GPU compute performance of each NC6 node is approxi-
mately 2.8TFLOPS in single precision mode [25] which is 
the mode used by Blender. The largest pool size we re-
quested was 128 GPU NC6 nodes, this provided a theoret-
ical peak performance of 0.36 PFLOPS. 

In addition, we use Azure resources to organize the 
computation: one node for running the task queue and 
one terabyte of Azure blob storage for the image tiles 
making up the terapixel image. An additional node hosts 
an Elasticsearch database that is used for storing all the 
performance metric data generated during each run. 

 
5.3 System scaling pilots 
To pilot the scaling performance of the system we under-
took two evaluations, an initial series of runs generating a 
gigapixel image (32678x32768 pixels) and a second com-
puting the full terapixel image (1048576x1048576 pixels). 

The gigapixel test was used to evaluate scaling over the 
full range of compute nodes from 1 to 128 nodes. How-
ever, as the gigapixel image consists of just 256 render 
tasks we predicted a drop off in scaling efficiency with 
higher numbers of compute nodes. This was because the 
variation in run time between tasks means the number of 
tasks available per node could drop to less than two for 
some nodes and as a result at the end of the computation 
some nodes are left idle for significant amounts of time. 

TABLE 3 
TERASCOPE PERFORMANCE METRICS  

Metric Units Frequency 

GPU Utilization percentage 1 Hz 
GPU Temperature degrees Centigrade 1 Hz 
GPU Power Watts 1 Hz 
Render duration seconds per task 
Tiling duration seconds per task 
Storage duration seconds per task 

During each run of the system we collect a continuous stream of 
data from all the operational compute nodes in addition to Azure’s 
standard metrics, a subset is shown here. 
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The gigapixel results are summarised in Fig. 4. The sys-
tem scales reasonably, although sub-linearly, up to 96 
nodes. Then the scaling efficiency reduces markedly as 
predicted, down to 63% of expected speedup at 112 and 
128 nodes. 

 
Fig. 4. Evaluating the scalability of the gigapixel computation on NC6 
K80 nodes, speedup as a function of the number GPU nodes from 1 
to 128 nodes scales, as expected, sub-linearly due to low task load. 

We expected noticeable variation in results from run to 
run due to load imbalances in the computation, to re-
source contention for physical hardware or to nodes fail-
ing and being automatically replaced by Azure. We tested 
this variability using repeated runs and saw run times that 
varied by  up to +/-8.5% from the mean. 

The gigapixel pilot results are broadly as expected with 
the system performing well up to the point where the 
amount of work available is no longer enough to keep 
each node fully busy. It therefore failed the Gustafson-
Barsis’ scaling law as the computational demand was not 
a good match to the compute resources available. With 
this pilot of the system architecture complete we moved 
on to evaluate the full terapixel computation. 

The terapixel experiment was more challenging, requir-
ing substantially more compute time and output storage. 
For these reasons the smallest number of nodes we evalu-
ated the terapixel computation with was 64, and even with 
64 GPUs the total run time was approximately 45 hours. In 
contrast to the gigapixel image we predicted the results 
from the terapixel experiment should exhibit close to line-
ar speedup as the number of compute nodes scales from 
64 to 128 nodes because the amount of work in the tera-
pixel computation easily exceeds the quantity of compute 
resource available.  

 The measured scaling results for the terapixel image 
are shown in Fig. 5. These appear to show that the system 
is scaling better than linearly, i.e. as more compute nodes 
are added the system is running faster than we would 
predict. 

Investigating this result in detail we found a small 

number of outlier tasks had affected some runs. These 
outliers ran for 70 times longer on average than we would 

have expected. Further investigation of the task perfor-
mance metrics uncovered that a small number of render-
ing tasks were running without GPU acceleration in 
Blender. This was not a consistent proportion on every run 
and the effect is summarised in Table 4. 

As a result of the outliers we needed a method to esti-
mate speedup fairly, to do this we excluded outlier tasks 
from consideration in the scaling calculations. The effect 
of the outlier tasks is removed from both from the run 
times of nodes and from the available node GPU resource. 
The resulting normalised speedup is also shown in Fig. 5. 

This shows the speedup ratio improving close to linearly 
as expected, with a small variation from the ideal that is 
now within the measured +/-8.5% range. In later runs we 
ran a script to detect and restart nodes that had long run-
ning tasks, and subsequently found a versioning issue 

 
Fig. 5. Evaluating the scalability of the terapixel computation on 
NC6 K80 nodes, plotting speedup ratio as a function of the num-
ber of GPU nodes from 64 to 128 nodes, the bars show the +/-
8.5% range of variability we measured in repeated runs. 

TABLE 4 
TERAPIXEL NORMALISED PERFORMANCE DATA (K80) 

Run 
Time lost to 
outlier tasks (s) 

Lost nodes 
(equivalent) 

Normalised 
run time (s) 

Normalised 
node count 

64 159305 1.00 150550 63.00 
80 49596 0.40 119815 79.60 
96 27581 0.27 98909 95.73 

112 60151 0.75 81964 111.25 
128 0 0.00 73268 128.00 

 
Outlier tasks were a small percentage of total tasks that ran with-
out GPU acceleration these caused an inflated measured 
speedup ratio to be calculated, normalized run time and node 
count removed these outlier tasks from consideration. 
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with drivers on some nodes that we corrected at system 
initialization before runs began.  

We found that our own metrics and those comparable 
metrics that were collected by Azure were in close agree-
ment regarding run time. However, our metrics collected 
finer grained results from within the computation in each 
task allowing verification of the sub-tasks shown Fig. 2. 
 
5.4 Scaling to supercomputer performance 
Following the two successful pilots we were interested to 
investigate the scale of computing performance the cloud 
could deliver for our application. Simultaneously a new 
GPU node became available in the Azure public cloud and 
over 1024 of them were available on demand. The new 
NC6v3 has six cores and one NVIDIA TESLA V100 GPU 
[26] delivering 14 teraFLOPS of single precision compute. 
Theoretically this would allow a system of 1024 nodes to 
scale to over 14 petaFLOPS compute performance, a level 
equivalent to systems high in the top 500 list of global 
supercomputers [27]. 

Based on a series of trial runs we found our single node 
used for performance metric capture could not cope with 
the rate of metrics data being generated in these larger 
runs. We adjusted the architecture so that parallel data 
stores were used for streaming metrics data. Because of 
the size of terapixel image computation we started our 
collection of metrics at 64 nodes and scaled up to collect 
data for runs at 128, 256, 512, 768 and 1024 nodes.  

 
Fig. 7. Heat map of total computation time for all tasks computed by 
each GPU node in the 1024 run, median is 50% grey, white is 
nodes executing for more time and black nodes for less time, we 
expect the random distribution of totals shown as individual task 
times vary. 

 
Recalling issues in the pilot runs with slow tasks not 

running on the GPU we confirmed runs were successful by 
analysing the spread of task run times and the sum of 
compute time for all tasks on each node. This time there 
were no outlier tasks in any of the runs. The total compute 
time per node is shown in Fig. 7 as a heatmap for the 
1024 run. As expected, this shows a random spread of 
total compute time resulting from the natural variations in 

individual task compute times. However, the results for 
the 768 run revealed that four nodes had significantly 
lower total compute values. Analysing total compute time 
per node across all runs showed the same behaviour in 
run 256. This turned out to be a standard behavior where 
Azure can deallocate and then restore a small number of 
nodes, in both cases in groups of four. The time taken for 
this reallocation was approximately twenty minutes of real 

time, hence those nodes showed significantly lower com-
pute time totals compared to their peers. In order to ac-
count for this behaviour we calculated the normalised 
number of nodes for the scaling calculations, based on 
the missing compute time, as shown in Table 5.  

 
 

Fig. 8. The speedup ratio plotted for the terapixel compu-
tation from 64 to 1024 NC6v3 V100 GPU nodes, the 
speedup shows close to linear scaling achieving 98% effi-
ciency at 1024 nodes. 

 
 

Using the normalised number of nodes for each run we 

TABLE 5 
TERAPIXEL NORMALISED PERFORMANCE DATA (V100) 

Run 
Run 
Time (s) 

Lost 
Time (s) 

Lost 
Nodes 

Normalised 
Nodes 

64 45632 0 0.000 64.0 
80 36567 0 0.000 80.0 
96 30900 0 0.000 96.0 

112 26551 0 0.000 112.0 
128 22778 0 0.000 128.0 
256 11469 5467 0.477 255.5 
512 5726 0 0.000 512.0 
768 3824 5896 1.542 766.5 

1024 2901 0 0.000 1024.0 
 
The final column is the normalised number of nodes after ac-
counting for dropped and reinstated nodes in runs 256 and 768, 
this repeats the pilot runs from 64 to 128 using V100 nodes and 
then scales up to the maximum tested 1024 nodes. 
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are able to plot the scaling graph in Fig. 8. The shows the 
terapixel calculation scales to make good use of from 64 
to 1024 nodes with a calculated efficiency of 98%, utilizing 
14 of the maximum 14.3 petaFLOPS available. 

An important ends-based performance measure is the 
wall clock time to compute an answer [16]. The total com-
pute time for all tasks in one terapixel image varies slight-
ly from run to run. To estimate the wall clock time to run 
the terapixel image on a single NC6v3 node we averaged 
across the total task compute time for each run, resulting 
in an estimate of 2,940,581 seconds or approximately 34 
days of compute time. This compares to 45,632 seconds 
or 12.7 hours on 64 nodes and to 2,901 seconds or 48 
minutes on 1024 nodes, as reported in Table 5. 
 
5.5 Accessible visualization platform 
One important outcome for us was that the terapixel visu-
alization was accessible to users on thin client devices. 
The aim being to make results from our supercomputer 

visualizations open to a range of audiences. Serving the 
hierarchical image format from Azure cloud Blob store to 
a krpano viewer enabled web page allowed the terapixel 
image to be browsed on devices including 24 Mpixel vid-
eo walls, desktop and laptop computers, UHD TVs, tablets, 
cell phones and even a gym cycling machine, as illustrated 
in Fig. 9. You can try it on your own device at this link [28]. 

6 DISCUSSION 
 

6.1 Computational performance 
The system, as reported above, did scale to use the re-
sources available, it was not ultimately limited by 
Amdhal’s law and was able to take advantage of Gus-
tafson-Barsis’ law application scaling to use the all the 
resources available efficiently. 

However, this success did require software engineering 
resources to develop and test the system. A number of 
unforeseen hurdles had to be overcome with specialist 
help relating to remote systems issues that were difficult 
to access or difficult to resolve without cloud supplier in-
tervention. These are likely to be teething issues with new 
cloud systems and compared to the procurement and 
systems support effort needed to build our own equiva-
lent system were a low barrier to making progress. 

The send-image system architecture was successful in 
allowing us to deliver the resulting visualization to thin-
clients across the whole spectrum of display types availa-
ble to end-users. Accessibility of results to a wide range of 
stakeholders is an important goal for urban data systems. 
 
6.2 Application performance 
For end users it is application rather than computational 
performance that is of paramount importance. We con-
sider Gustafon’s [16] ends-based metrics below: 

The time to compute an answer dropped from an in-
feasible 34 days to a reasonable 48 minutes on the largest 
cloud system tested. This fulfills our original end user tar-
get of producing a terapixel image once a day. 

The degree of completeness of the answer is more 
complex to assess as in photo-realistic graphics we can 
always do more. However, we have produced the first ter-
apixel visualization of an urban digital twin and done so 
with high quality 3D geometry, rendered using path trac-
ing with a good sampling level of up to 20 rays per pixel, 
or a maximum of 20 trillion rays cast. 

The maximum feasible problem size we measure by 
image resolution in pixels, the cloud enabled the produc-
tion of a terapixel image that would be impractical on a 
desktop system.  This is also the highest resolution we 
need for the current 1.2kmx1.2km city model as we don’t 
have urban sensors or city geometry at sub-millimeter 
scale. 

System reliability is critical in long or large rendering 
operations. The self-repairing behavior demonstrated by 
the cloud, even though more complex to account for in 
scaling calculations, is a benefit. It is something that we 
did not have in our private cloud [21] where days of 
runtime could be lost while system repairs took place. This 
depends on local investment in system support. 

Hardware updates from an application viewpoint the 
change in the cloud from NVIDIA K80 to V100 GPU nodes 
was transparent delivering about three times improve-
ment in performance. This would have been a very signifi-
cant procurement effort for an upgrade to a local super-
computer installation. 

Confidential data protection building a send-image ar-
chitecture in the cloud means confidential data, particu-
larly the 3D model of the city was protected. This helped 
enforce license restrictions as no model data was sent to 

 

Fig. 9. The hierachical krpano image format for serving the visuali-
zation to users from Azure Blob store allows it to be viewed interac-
tively on a wide range of thin client devices, shown here anti-
clockwise from top are the 8 Mpixel Curtin HIVE cylinder, a Sam-
sung Galaxy S3 and on our local gym cycling machine. 
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client devices, this is in contrast to webGL browser solu-
tions where model data is sent to client devices. 
 
6.4 Energy use and financial cost  
On-premises supercomputers require long term commit-
ments to energy and running costs, whereas for cloud 
supercomputers we can consider these as one-off costs 
for each run. For the terapixel runs we predict that both 
energy use and costs should be constant with number of 
nodes as the compute time falls linearly with the number 
of nodes used, as shown in Fig. 6. 

We estimate total energy per run, E, in kWh as 
 

*av normE p r   (3) 
 
where pav, is the average power drawn in kW by the 

system and, rnorm, is the normalized total run time on n 
nodes. The results are shown in Table 6 were as expected 
E remains approximately constant across runs. 

To understand our experimental costs, we similarly es-
timated total cost per run, C, as 

 

*hr normC c r    (4) 
 
where chr is the average cost per hour of the number of 

nodes. Table 7 shows costs stay roughly constant as ex-
pected. It is worth noting this doesn’t include develop-
ment time or failed runs, we estimated these factors dou-
bled our costs for this set of experiments, but in a longer 
series of production runs would become less significant. 

A final ends-based metric from Gustfson is perfor-
mance divided by system cost, which we estimate for each 
run as the ratio of pixels per pound spent, PP: 

 
Pix

PP
C

    (5) 

 where Pix is one trillion, the total number of pixels in 
our rendered image. If our scaling is sub-linear, we will see 
this ratio go down and see diminishing returns on our 
investment. Because in the terapixel case our scaling is 
close to linear PP is approximately constant varying by 
less than 5%, as shown in Table 7.   

 
6.3 Future scaling using the cloud 
We have demonstrated the ability to scale an application 
on current generation GPU technology using the cloud to 
over 1000x the performance of a single desktop system. 
As application researchers this future scaling allows us to 
experiment with creating the software tools that we need 
for the next generation of visualization applications. How 
far into the future this allows us to plan depends on pre-
dicting how well system performance will improve.  

The future of Moore’s law is being challenged and scal-
ing out to the cloud has been suggested as one way to 
mitigate the need for continuous hardware improvement. 
However, while we have demonstrated the cloud can pro-
vide huge advantage during any single hardware cycle it, 
at best, scales up linearly. Over time this could not match 
the exponential scaling Moore’s law has delivered. Even if 
datacenters could scale exponentially by floor area so 
would the power and cooling needs. 

 
Fig. 10. The performance in gigaFLOPS of GPU devices from NVID-
IA since 2008, an exponential regression fits this well allowing pre-
diction of future performance if the same rate of improvement con-
tinues. 

 
Fortunately for GPU system users a range of improve-

ments mean the whole software/hardware stack for 
graphics and AI continues to demonstrate exponential 

TABLE 6 
TERASCOPE SYSTEM ENERGY USE 

n 
nodes 
used 

pav  

average pow-
er draw (kW) 

rnorm  
normalised 

run time (hrs) 

E  
total power 

(kWh) 

64 7.44 41.82 311 
80 9.47 33.28 315 
96 11.42 27.47 314 

112 13.66 22.77 311 
128 15.02 20.35 306 

 
Energy use summarised per run on the NC6 K80 nodes, more 
nodes use more energy but run for a shorter time so total power 
drawn is similar across runs. 

TABLE 7 
TERASCOPE SYSTEM COSTS 

n 
Nodes 
used 

chr  

cost per 
hour (£) 

rnorm  

Normalised 
run time (hrs) 

C  
Total 

Cost (£) 

PP  
Pixels/Pound 

(millions) 

64 42.94 41.82 1796 612 
80 53.68 33.28 1787 615 
96 64.42 27.47 1770 621 

112 75.15 22.77 1711 642 
128 85.89 20.35 1748 629 

 
Costs are summarized for each run on the NC6 K80 nodes, the 
costs remain similar across runs because the total compute time 
required for the terapixel computation is constant. 
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growth [29], as illustrated in Fig. 10. If we use NVIDIA’s 
GPU performance to date as a guide and predict forward, 
then it should take about twenty years for the petaFLOP 
performance we have demonstrated in this paper to be-
come the norm on everyday desktop computers. Technol-
ogies already announced that will contribute to this in-
clude the NVIDIA RTX hardware support for ray tracing 
[30] and the Blender 2.8 EEVEE algorithms [31]. 

7 CONCLUSIONS 
We set out to address three goals: 

Design a new supercomputer application architecture 
for scalable visualization using the public cloud. We deliv-
ered this using Azure APIs, the krpano viewer and our own 
task generation and metric monitoring codes. 

Produce the first terapixel urban IoT visualization sup-
porting live daily updates. We exceeded this target and 
demonstrated we can render these as frequently as every 
hour at the same cost as a single node that would take 34 
days. 

Undertake a rigorous performance evaluation of cloud 
supercomputing for visualization applications. We have 
demonstrated Gustafson-Barsis’ scaling holds for terapixel 
visualization and achieved twenty sample path traced 
rendering rates that are equivalent to a real time frame 
rate of 200Hz for full HD path tracing. 

For the future we could use the system to produce day-
light correct images of the city hourly throughout the day. 
We could also use the ray casting power of the system to 
produce a lightfield rendering which would allow soft fo-
cus effects in real time without re-rendering and/or light-
field VR/AR display support.  

We don’t need more pixels in the current geographic 
area but a larger digital twin covering the wider suburban 
area around Newcastle-upon-Tyne would be a benefit for 
the region. For example, a 33km2 map would require a 
petapixel image that would take 33 days rendering on 
1024 nodes, setting a future challenge for our cloud archi-
tecture. 

Finally, based on our systems experience in this project, 
we would support the conclusions in [32] that future 
cloud supercomputing projects would benefit from: im-
proved metrics collection, performance visualization 
modules, transparent error reporting and simpler purchas-
ing, licensing and cost tracking systems. 
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