
NEWCASTLE UNIVERSITY

 Petascale Cloud Supercomputing for
Terapixel Visualization of a Digital Twin

Nicolas S. Holliman, Member IEEE Computer Society, Manu Antony,
James Charlton, Stephen Dowsland, Philip James and Mark Turner

Abstract— Background—Photo-realistic terapixel visualization is computationally intensive and to date there have been no
such visualizations of urban digital twins, the few terapixel visualizations that exist have looked towards space rather than earth.
Objective—our aims are: creating a scalable cloud supercomputer software architecture for visualization; a photo-realistic
terapixel 3D visualization of urban IoT data supporting daily updates; a rigorous evaluation of cloud supercomputing for our
application. Method—We migrated the Blender Cycles path tracer to the public cloud within a new software framework designed
to scale to petaFLOP performance. Results—we demonstrate we can compute a terapixel visualization in under one hour, the
system scaling at 98% efficiency to use 1024 public cloud GPU nodes delivering 14 petaFLOPS. The resulting terapixel image
supports interactive browsing of the city and its data at a wide range of sensing scales. Conclusion—The GPU compute
resource available in the cloud is greater than anything available on our national supercomputers providing access to globally
competitive resources. The direct financial cost of access, compared to procuring and running these systems, was low. The
indirect cost, in overcoming teething issues with cloud software development, should reduce significantly over time.

Index Terms—Data Visualization, Internet of Things, Scalability, Supercomputers

——————————  ——————————

1 INTRODUCTION

S we gather increasing amounts of data about our
urban environment it is important to present this in

informative, engaging and accessible ways so that the
widest possible set of stakeholders have the potential to
see the data. The Newcastle Urban Observatory [1] has
been collecting IoT sensed environmental data about the
city of Newcastle-upon-Tyne for over three years, gather-
ing more than nine hundred million data records to date.
As is common to many data platforms the rate of data
collection is significantly faster than the rate at which hu-
mans can comprehend and learn from the information the
data carries [2]. Therefore, we explore how we can present
descriptive statistics, such as hourly sensor averages, in a
realistic 3D visualization of the city and do so at a range of
geographic scales.

Terapixel images are images that contain over one tril-
lion pixels and, within the right toolset [3], provide an in-

tuitive, fluid user experience where the viewer can see an
overview of the whole image or zoom into incredible de-
tail. In this article we demonstrate that we can zoom in
from an overview of just over one square kilometre of the
city of Newcastle-upon-Tyne to see detail within a single
room in an office or a house with one pixel in the image
representing an area of 1.4 mm2 in the real world. Because
viewing a terapixel image depends only on image display
capabilities any web browser can display it, making tera-
pixel images accessible on a wide range of thin clients.
This opens access to high quality, high detail visualizations
without needing an expensive, in cost or energy use [6],
client-side 3D graphics engine. To the best of our
knowledge we present here the first terapixel visualization
of IoT data within a 3D urban environment.

To visualize the city and its data we have chosen an ad-
vanced path-tracing renderer that is more typically used
for cinematic and architectural rendering. We selected
Cycles, from the Blender toolset [4], because of its high
quality physically based lighting simulation calculations.
This has allowed us to achieve an elevated level of realism
in our rendering of the city and bringing with it graphical
options that are not available in visualization tools that
use standard hardware rendering libraries.

The combination of high-quality rendering and tera-
pixel imaging can be an attractive one for users and al-
lows us to explore new ways of visualizing urban IoT data
within its city context. However, while the end user experi-
ence is compelling there is a significant computational
cost to producing a high quality terapixel image. To ad-
dress this issue, we propose the use of supercomputer
scale systems in the cloud. The focus of this article is the

————————————————
 N.S. Holliman is with the School of Computing, Newcastle University,

Newcastle-upon-Tyne, NE4 5TG. E-mail:
nick.holliman@newcastle.ac.uk

 M. Antony is with the School of Computing, Newcastle University,
Newcastle-upon-Tyne, NE4 5TG. E-mail: m.antony@newcastle.ac.uk

 J. Charlton is with the Department of Architecture and Built Environ-
ment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST. E-
mail: j.charlton@northumbria.ac.uk

 S. Dowsland is with the School of Computing, Newcastle University,
Newcastle-upon-Tyne, NE4 5TG. E-mail:
stephen.dowsland@newcastle.ac.uk

 P. James is with the School of Engineering, Newcastle University,
Newcastle-upon-Tyne, NE4 5TG. E-mail:
philip.james@newcastle.ac.uk

 M. Turner is with the School of Computing, Newcastle University,
Newcastle-upon-Tyne, NE4 5TG. E-mail:
mark.turner@newcastle.ac.uk

A

NEWCASTLE UNIVERSITY

design, deployment and rigorous evaluation of a scalable
cloud rendering architecture for urban data visualization.

2 BACKGROUND
We briefly review three background topics: urban data
visualization, scalable computing in the cloud, and exist-
ing architectures for distributed and cloud rendering.

2.1 Urban Data Visualization
Urban data visualization brings together large 3D models
of cities and countries with real time and historical data
from many sources including IoT sensing devices [5]. The
concept of a digital twin for observing, exploring and pre-
dicting urban behavior is rapidly gaining ground [6]. Visu-
alization methods directly support the Gemini principle [7]
of creating insight into the data in a digital twin.

The Royal Society [8] proposes that for data to be
trustworthy it needs to be made intelligently open, in par-
ticular, to be accessible, intelligable and assessable. Our
investigation of terapixel imaging explores how the acces-
siblity and intelligibilty of urban IoT data can be improved,
potentially leading to better assessability of its reliablity,
meaning and value. To achieve this our terapixel 3D urban
visualization of Newcastle’s IoT data has five goals [9] aim-
ing to be:

Truthful: to show accurate statistical data about the city,
to scale and situated within its spatial context.

Functional: to create an interactive scalable visualiza-
tion that works across platforms with low overhead.

Beautiful: to use the highest quality rendering tools,
applying cinematic quality production techniques.

Insightful: to reveal new insights across scale about the
urban environment in the city of Newcastle-upon-Tyne.

Enlightening: accessible to the viewer so they are able
to gain a deep comprehension of the data.

Terapixel images have been previously used to visualize
astronomical observations [10] while multiple gigapixel
images have been used for visualizing cosmology simula-
tion outputs [11]. We aim to apply terapixel imaging to
look towards, instead of away from, Earth and to present
observations about one region on Earth in detail.

2.2 Scalable Cloud Computing
Public cloud services have started to offer as IaaS (Infra-
structure as a Service) an increasing amount of GPU com-
pute capacity, this enables supercomputer scale compute
performance to be deployed, utilised and released on-
demand. Current examples include the Azure N-series [12]
and AWS EC2 Elastic GPUs [13].

In the cloud, as with any parallel system, the same clas-
sical laws bound a system’s scalability. Amdahl’s law [14]
can be summarized as: any one parallel computation is
limited in scalability as the number of nodes n increases
by the fraction of the problem that cannot be parallelized.
If p is the parallel fraction, and f the serial fraction, then
speedup S is given by:

 ()
1

S n
p

f
n





 (1)

We need to take care using the cloud that additional
management services don’t add undue serial overhead
and limit our best performance. Even at f = 0.1% the
overhead will limit our best speedup to 506 for n = 1024
nodes.

The Gustafson-Barsis’ law [15] reconsidered how paral-
lel computers are used in practice and defined scalability
in relation to problem size, arguing that the problem size
is always scaled to fill the compute capacity:

() (1)S n n f n   (2)

In the rendering approach we have chosen here the

problem can scale to fill the largest machine we have
available. As a result, we would expect to see the Gus-
tafson-Barsis law holding if the problem size remains large
enough. We should therefore see efficient linear scaling as
we add more compute nodes. Even so there is a limit to
the compute size of our problem and at that point
Amdhal’s law will ultimately define the bounds of scalable
performance for us.

In later work Gustafson [16] argued the for use of ends-
based performance measures as well as pure computa-
tional metrics. As our interest here is application driven as
much as system driven we also consider the following
from Gustafson's proposed ends-based metrics:

 Time to compute the answer.
 Completeness of the answer.
 Maximum feasible problem size.
 System reliability.
 Performance divided by the system cost.
We also add an additional application metric, future

scaling, which provides a prediction of how far into the
future it will be before the system performance we
achieve on a supercomputer today might be available on
everyday desktop workstations.

2.3 High Performance Visualization Systems
Many distributed and parallel rendering system architec-
tures for High Performance Visualization (HPV) have been
proposed as new High Performance (HPC) and High
Throughput (HTC) platforms have appeared [2].

From the earliest days of HPV systems, rendering has
often been thought of as ideally parallel even though this
is not the case when geometry data sizes exceed local
memory or network transfer bandwidth [17]. Nonetheless,
rendering is often a good test of new hardware perfor-
mance since it is capable of scaling to follow Gustafson’s
law, absorbing all available compute resource. This is par-
ticularly the case for photorealistic and physically-based
path tracing algorithms whose performance is dominated
by floating point calculations.

Remote HPV systems can be categorised as being
send-data, send-geometry or send-image [2]. Send-data
systems assume a local GPU at the client and the server
sends a subset of the application data to be converted to

NEWCASTLE UNIVERSITY

geometry and rendered locally into an image. Send-
geometry systems convert the data to geometry at the
server and send just geometric and material data to the
client to be rendered. In both cases the client needs sub-
stantial network, and compute resources, and in the worst
case as the data size grows the client-side resource de-
mand is unbounded.

The third approach send-image, and the one we take in
this project, is where the geometry is generated and ren-
dered on the server and only the image is sent to the
client. The key advantage is the maximum image data
required at any one time is bounded by the fixed number
of pixels on display rather than the unbounded data or
model geometry. This bounds the network bandwidth
needed between server and client.

A similar approach to ours was described by Chen et al
in [18] which generalises previous image-based rendering
systems such as QuickTime VR. Chen uses a multiresolu-
tion tiled image as the output format and serves this
from an http server to viewers running in client browsers.
Our work differs in that we aim to use the public cloud to
render the terapixel images and to parallelize all the op-
erations needed to output the multiresolution tiled image
format in addition to the rendering operations.

One solution to our visualization problem could be to
use a render farm, both private and public render farms
exist and render services are available in the cloud. How-
ever, currently these don’t offer all the functionality we
need to build an end-to-end terapixel solution, they are
primarily tuned to production animation rendering.

2.4 Summary
We aim to generate high quality, terapixel urban data
visualizations that are rendered by a system that scales to
efficiently use as many compute nodes as are available.
We have chosen to design this as a send-image system
architecture so that thin-clients are as capable of display-
ing the visualization as fat-clients with the aim of sup-
porting wide accessibility to the results of advanced visu-
alization methods.

3 SYSTEM ARCHITECTURE

We have previously discussed [19] how a send-image
architecture for remote cloud rendering, where the ren-
dering is server-based and a pixel-stream is sent to the
client, has important advantages including 1) Decoupling
the task of display from the computationally complex task
of rendering, enabling the use of thin-clients to view
complex visualizations, 2) Limiting the maximum band-
width needed to the client display device, which is other-
wise unbounded in thick-client solutions. The following
details the requirements and the design of such a system
for terapixel visualization.

3.1 The Visualization
As shown in Fig. 1 we used a 1.28km x 1.28km 3D map of
central Newcastle-upon-Tyne as the context for our visu-
alization. This defined the geographic boundaries of the
visualization and the IoT sensors we included. Since a ter-

apixel image consists of 220 * 220 or (1,048,576)2 pixels this
means that one pixel in our terapixel image represents
approximately 1.2mm x 1.2mm in the real world. This pro-
vides the ability in a single image to zoom in from city
scale to an area of about the size of desk in a room in a
building. This represents a zoom factor of approximately
512x on a full HD display allowing users to view data in
the city at a wide range of scales.

Set within this map are glyphs representing the loca-
tion of Urban Observatory IoT sensors [1] around the city,
the sensors are situated both externally in the city and
internally within the Urban Sciences Building. For the pur-
poses of this visualization we use an arbitrary day’s tem-
perature values, averaged over one hour for each of the
sensors. The average temperature value is represented as
a solid colour at the centre of each glyph, though not ob-
vious in a single still image the glyphs automatically orient
themselves to face the camera and rescale at preset zoom
levels to maintain a reasonable size. Some of the glyphs
represent sensors that are physically as close as 100mm in
the real world.

Fig. 1. The terascope image of Newcastle-upon-Tyne, the inset im-

ages are zoomed in views illustrating the internal sensors in the

Urban Sciences Building, glyph colours represent the average tem-

perature at each sensor over one hour, glyphs are rescaled as the

viewer zooms in so that they retain a reasonable size in the image.

NEWCASTLE UNIVERSITY

3.2 Technical Requirements
One terapixel image requires approximately one terabyte
of storage, something that is not currently easy to down-
load as a single image file to most clients. Instead, we
manage image viewing as a streaming process using a
client-side image streaming tool, the krpano Viewer [3].
This requires the image to be stored on the server in a
hierarchy, with each layer of the pyramid a complete im-
age, tiled into 512x512 image tiles. The properties of each
level in the pyramid are shown in Table 1 where the side
length of each layer doubles with depth in the pyramid.

To create the image pyramid, we could render each
level individually or render just the highest resolutionlevel
12 and sub-sample this to calculate all the lower levels in
the hierarchy. However, we adopt a compromise where we
render levels 12, 8 and 4 and subsample these levels to fill
in each set of three intermediate levels. This saves total
rendering time compared to rendering every level and
reduces compression errors in the lower level images
compared to repeatedly subsampling the full image. This
approach also allows us to render features such as the IoT
sensor glyphs at different scales in the image for the three
key hierarchy levels, keeping the glyphs a more appropri-
ate size as the viewer scales through the wide zoom range
in the image.

To calculate intermediate levels in the image pyramid
from rendered levels we can apply a general smoothing
function [20]. Any layer l-1 can be generated from a high-
er resolution level l by sub-sampling using a kernel
weighted filter such that a sub-sampled pixel Gl-1(i,j) is
related to the pixels in a higher resolution image by:

1 (,) (,) (2 , 2)l l
m n

G i j w m n G i m j n     (3)

where the weighting function w(m,n) is chosen to balance
between the speed of computation and quality of the
sub-sampled layers.

3.3 Design
The computation we need to undertake is now defined. To
generate a one terapixel image we need to compute an
image pyramid of 5,592,405 image tiles. Every fourth lev-
el in the pyramid will be rendered directly and the remain-
ing intermediate levels will be computed by subsampling
the rendered layers.

As shown in Fig. 2 we group image tiles for rendering
efficiency render into tasks of 4096x4096 pixels which are
then split and subsampled as required into tiles. We
therefore need to compute a total of 65,703 render tasks.
For the examples here, our entire 3D city model is as-
sumed to be replicable to every compute node while each
task definition has a relatively small payload defining the
4Kx4K region to be rendered. The result is an almost ide-
ally task parallel application, with little communication
overhead compared to compute demand. This makes it
suitable as a starting point for testing the scalability of
cloud supercomputing.

4 SYSTEM IMPLEMENTATION
In order to implement a highly scalable parallel version of
the data flow architecture in Fig. 2 we used a combination
of Microsoft Azure tools and our own application soft-
ware.

4.1 Scalable public cloud framework
We previously implemented a rendering framework for
urban IoT data that was designed to update images from
live IoT data using a mixture of public and private cloud

Fig. 2. The data flow for the compute tasks required to generate a
single terapixel image pyramid. Blender is used to render the imag-
es and Pillow is used to generate the krpano image tiles.

TABLE 1
TERAPIXEL IMAGE PROPERTIES

Pyramid
level

Image side
length

(pixels)

Total number of
pixels at this

level

Number of
512x512

tiles

Tile side
length in
the real

world
(mm)

12 1048576 1099511627776 4194304 625
11 524288 274877906944 1048576 1250
10 262144 68719476736 262144 2500

9 131072 17179869184 65536 5000
8 65536 4294967296 16384 10000
7 32768 1073741824 4096 20000
6 16384 268435456 1024 40000
5 8192 67108864 256 80000
4 4096 16777216 64 160000
3 2048 4194304 16 320000
2 1024 1048576 4 640000
1 512 262144 1 1280000

The terapixel image is a hierarchical pyramid of 512x512 pixel tiles,
this supports interactive panning and zooming for the image.

NEWCASTLE UNIVERSITY

resources [21]. This was capable of rendering images up
to UHD (3840x1920) resolution and was used to update
images of IoT data every few minutes throughout the day.

Fig. 3. Cloud supercomputing system architecture, constructed over
Azure™ public cloud IaaS.

The size of the computational task for the terapixel im-
age was too large for our private cloud. We therefore cre-
ated the terapixel system using public cloud components.
To create a scalable frame work for the computation we
used the following components as shown in Fig. 3:

 We inject the 65,793 rendering tasks into an Azure

Batch task queue and allow the queue to distribute
the tasks between the pool of compute nodes. It also
manages node failure and replacement. The tasks are
added to the queue using Azure Functions, a server-
less service that runs single scripts on-demand. The
script creates three separate jobs, one each for levels
4, 8 and 12 in the image pyramid, and then creates
the render tasks for each job. Each task contains the
data required to start Blender when run on a node.

 Compute nodes are packaged as an Azure Managed
Image that runs the Blender and Pillow tools with the
whole city model. A pool of compute nodes is then
requested manually, using the managed image as a
template. The number of compute nodes is varied to
adjust for the performance data collection. Note that
compute nodes can, and do, fail during execution and
Azure should seamlessly swap these back in.

 Azure Blob Storage provides a scalable solution to
storing the 5,592,405 output image tiles in a folder
hierarchy suitable for the krpano viewing tool. By de-
fault Blob Storage has an http server interface suita-
ble for serving the client-side krpano app with the

image tiles it requests when a user is viewing the im-
age.

While much of the system underpinnings are managed
by Azure we still had to run custom health checks on the
nodes to ensure that drivers versions were correct and
that the GPU was still accessible to the Blender. On some
occasions we found that driver issues arose that required
action to update and reboot the machine. Healthchecks
and required actions were carried out using Ansible [22].
Ansible is an IT automation engine, which allowed us to
run arbitrary commands across our batch pool through an
SSH connection. Ansible requires the creation of an inven-
tory in order to connect to a pool of machines. This inven-
tory was generated using the Azure Batch API [23].

4.2 Blender Cycles Rendering
Blender Cycles is an unbiased physically-based path trac-
ing engine which creates an image by tracing light rays
backwards from the camera through a scene. Because it
simulates realistic effects such as soft shadows, caustics
and glossy surfaces it can require very significant compute
times. However, also because it supports these effects it
allows the use of advanced cinematic visualization effects
in an urban smart city visualization.

There are a considerable number of optimisation and
tuning parameters in Blender Cycles, and we ran a series
of trials with the aim being to optimize image quality and
compute time. In particular for GPU supported execution
we set the number of samples per pixel to be 20, the Cy-
cles tile size to be 256x256 and the post-rendering image

denoising radius to be 5. This resulted in a single 4Kx4K
task rendering time of approximately 150 seconds on the
target hardware described below.

4.3 Pillow for Image Splitting and Sub-sampling
The output from Blender for each render task is a 4kx4k
image and this needs to be split into 512x512 tiles and

TABLE 2
TERAPIXEL TASK PROPERTIES

Hierarchy
level

4kx4k pixel image
rendering tasks

512x512
pixel output
tiles

Estimated storage
for JPEG coded
tiles in kB

12 65536 4194304 436207616
11 1048576 109051904
10 262144 27262976

9 65536 6815744

8 256 16384 1703936
7 4096 425984
6 1024 106496
5 256 26624
4 1 64 6656
3 16 1664
2 4 416
1 1 104

Totals 65,793 5,592,405 581,610,120

One terapixel image requires 65,793 task computations generat-
ing 5,592,405 image tiles in 12 hierarchical levels requiring ap-
proximately 0.54 tB of Azure Blob™ storage, levels 4, 8 and 12
are computed, other levels are downsampled from these results

NEWCASTLE UNIVERSITY

subsampled to form the tiles for the three lower resolu-
tion layers beneath each rendered layer in the pyramid, as
described in Table 2.

To retain image quality for the splitting process Blender
is requested to output a lossless PNG format image. This
is then passed to a python script calling the Pillow API
which both splits the 4Kx4K image into 512x512 tiles and
subsamples it to form the lower resolution layers using
the resize function. All 512x512 tiles are stored using JPG
to save storage space and client transfer bandwidth.

4.4 Performance metric collection
To understand the performance of the system we de-
signed into the architecture a series of performance met-
ric data collection points. These generate typed, timed
messages at key points in the computation, for example
rendering start and end points, that are stored in a dedi-

cated database. Table 3 summarises the subset of metrics
we collect that are most relevant to this article.

The performance capture system is built on software
commonly refered to as the ELK stack. ELK being a com-
bination of Elasticsearch, Logstash and Kibana. Elas-
ticsearch is a distributed, RESTful search and analytics en-
gine [24]. Logstash is a data processing pipeline that in-
gests data from multiple sources, transforms it, and sends
it on to a storage system. Kibana is a visualization tool for
exploring data stored in Elasticsearch.

Data stored in Elasticsearch is arranged into indexes.
Indexes are collections of data points that share the same
data model. The Terascope performance metrics use three
different indexes; render, gpu and metricbeat. All the data
stored in each of these indexes is timeseries in nature –
the value of metric X at time Y was Z. The render index
stores all the render events as an image is generated on
the node. The GPU index stores all the performance met-
rics that can be interegated from the GPU hardware for
every node in the entire pool. GPU data is captured by
logstash every second and sent to the Elasticsearch GPU
index. Finally, the metricbeat index is populated using a
logstash tool called metricbeat. Metricbeat captures data
about the state of all the hardware (with the exception of
the GPU) on each of the nodes. There are many granular
details to this data but broadly it captures information
about the state of the CPU cores, memory, disks and net-
work.

These metrics complement the metrics generated by
Azure which don’t record at the same level of granularity.

This approach also allowed us to compare our own
measures of run time with Azure’s measures providing a
way to track any overhead introduced by the Azure
framework.

The total runtime system load for our metrics collection
is not significant compared to the overall compute load
and each full terapixel image run generates around 65
Gigabytes of performance data.

5 EVALUATION

5.1 Characterising the tasks
The computation of a terapixel image using Blender Cy-
cles should be ideally parallel since we can, in the current
scene replicate, the model geomery on every node. The
main communications load is the output to Azure Blob
storage of a 4Kx4K image divided into 512x512 tiles every
task, roughly every 150 seconds. A characterisation of the
tasks we need to compute is in Table 3.

5.2 Choosing a cloud virtual machine
Current public cloud offerings present a range of prede-
fined virtual machine specifications to choose from and a
number of possible global locations. For the compute
nodes in the first set of evaluation runs reported here we
choose a lower end virtual machine to control our costs,
the Azure NC6 node. This consists of an Intel Xeon E5-
2690v3 CPU, a K80 NVIDIA GPU with 56Gbytes of memory
and 380Gbytes of SSD disk space. Each NC6 virtual ma-
chine however shares the CPU and the GPU with a second
virtual machine and has half the CPU cores and one half
of the K80 GPU card. This results in each NC6 node having
six CPU cores and one GPU. Therefore, the theoretical
GPU compute performance of each NC6 node is approxi-
mately 2.8TFLOPS in single precision mode [25] which is
the mode used by Blender. The largest pool size we re-
quested was 128 GPU NC6 nodes, this provided a theoret-
ical peak performance of 0.36 PFLOPS.

In addition, we use Azure resources to organize the
computation: one node for running the task queue and
one terabyte of Azure blob storage for the image tiles
making up the terapixel image. An additional node hosts
an Elasticsearch database that is used for storing all the
performance metric data generated during each run.

5.3 System scaling pilots
To pilot the scaling performance of the system we under-
took two evaluations, an initial series of runs generating a
gigapixel image (32678x32768 pixels) and a second com-
puting the full terapixel image (1048576x1048576 pixels).

The gigapixel test was used to evaluate scaling over the
full range of compute nodes from 1 to 128 nodes. How-
ever, as the gigapixel image consists of just 256 render
tasks we predicted a drop off in scaling efficiency with
higher numbers of compute nodes. This was because the
variation in run time between tasks means the number of
tasks available per node could drop to less than two for
some nodes and as a result at the end of the computation
some nodes are left idle for significant amounts of time.

TABLE 3
TERASCOPE PERFORMANCE METRICS

Metric Units Frequency

GPU Utilization percentage 1 Hz
GPU Temperature degrees Centigrade 1 Hz
GPU Power Watts 1 Hz
Render duration seconds per task
Tiling duration seconds per task
Storage duration seconds per task

During each run of the system we collect a continuous stream of
data from all the operational compute nodes in addition to Azure’s
standard metrics, a subset is shown here.

NEWCASTLE UNIVERSITY

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

48 64 80 96 112 128 144

Sp
ee

du
p

ra
tio

 v
s

64
 n

od
es

Number of compute nodes

Ideal Measured Normalised

0.0

16.0

32.0

48.0

64.0

80.0

96.0

112.0

128.0

0 16 32 48 64 80 96 112 128

S
p

ee
du

p
 r

at
io

 f
ro

m
 1

 n
o

de

Number of compute nodes

Actual Ideal

The gigapixel results are summarised in Fig. 4. The sys-
tem scales reasonably, although sub-linearly, up to 96
nodes. Then the scaling efficiency reduces markedly as
predicted, down to 63% of expected speedup at 112 and
128 nodes.

Fig. 4. Evaluating the scalability of the gigapixel computation on NC6
K80 nodes, speedup as a function of the number GPU nodes from 1
to 128 nodes scales, as expected, sub-linearly due to low task load.

We expected noticeable variation in results from run to
run due to load imbalances in the computation, to re-
source contention for physical hardware or to nodes fail-
ing and being automatically replaced by Azure. We tested
this variability using repeated runs and saw run times that
varied by up to +/-8.5% from the mean.

The gigapixel pilot results are broadly as expected with
the system performing well up to the point where the
amount of work available is no longer enough to keep
each node fully busy. It therefore failed the Gustafson-
Barsis’ scaling law as the computational demand was not
a good match to the compute resources available. With
this pilot of the system architecture complete we moved
on to evaluate the full terapixel computation.

The terapixel experiment was more challenging, requir-
ing substantially more compute time and output storage.
For these reasons the smallest number of nodes we evalu-
ated the terapixel computation with was 64, and even with
64 GPUs the total run time was approximately 45 hours. In
contrast to the gigapixel image we predicted the results
from the terapixel experiment should exhibit close to line-
ar speedup as the number of compute nodes scales from
64 to 128 nodes because the amount of work in the tera-
pixel computation easily exceeds the quantity of compute
resource available.

 The measured scaling results for the terapixel image
are shown in Fig. 5. These appear to show that the system
is scaling better than linearly, i.e. as more compute nodes
are added the system is running faster than we would
predict.

Investigating this result in detail we found a small

number of outlier tasks had affected some runs. These
outliers ran for 70 times longer on average than we would

have expected. Further investigation of the task perfor-
mance metrics uncovered that a small number of render-
ing tasks were running without GPU acceleration in
Blender. This was not a consistent proportion on every run
and the effect is summarised in Table 4.

As a result of the outliers we needed a method to esti-
mate speedup fairly, to do this we excluded outlier tasks
from consideration in the scaling calculations. The effect
of the outlier tasks is removed from both from the run
times of nodes and from the available node GPU resource.
The resulting normalised speedup is also shown in Fig. 5.

This shows the speedup ratio improving close to linearly
as expected, with a small variation from the ideal that is
now within the measured +/-8.5% range. In later runs we
ran a script to detect and restart nodes that had long run-
ning tasks, and subsequently found a versioning issue

Fig. 5. Evaluating the scalability of the terapixel computation on
NC6 K80 nodes, plotting speedup ratio as a function of the num-
ber of GPU nodes from 64 to 128 nodes, the bars show the +/-
8.5% range of variability we measured in repeated runs.

TABLE 4
TERAPIXEL NORMALISED PERFORMANCE DATA (K80)

Run
Time lost to
outlier tasks (s)

Lost nodes
(equivalent)

Normalised
run time (s)

Normalised
node count

64 159305 1.00 150550 63.00
80 49596 0.40 119815 79.60
96 27581 0.27 98909 95.73

112 60151 0.75 81964 111.25
128 0 0.00 73268 128.00

Outlier tasks were a small percentage of total tasks that ran with-
out GPU acceleration these caused an inflated measured
speedup ratio to be calculated, normalized run time and node
count removed these outlier tasks from consideration.

NEWCASTLE UNIVERSITY

with drivers on some nodes that we corrected at system
initialization before runs began.

We found that our own metrics and those comparable
metrics that were collected by Azure were in close agree-
ment regarding run time. However, our metrics collected
finer grained results from within the computation in each
task allowing verification of the sub-tasks shown Fig. 2.

5.4 Scaling to supercomputer performance
Following the two successful pilots we were interested to
investigate the scale of computing performance the cloud
could deliver for our application. Simultaneously a new
GPU node became available in the Azure public cloud and
over 1024 of them were available on demand. The new
NC6v3 has six cores and one NVIDIA TESLA V100 GPU
[26] delivering 14 teraFLOPS of single precision compute.
Theoretically this would allow a system of 1024 nodes to
scale to over 14 petaFLOPS compute performance, a level
equivalent to systems high in the top 500 list of global
supercomputers [27].

Based on a series of trial runs we found our single node
used for performance metric capture could not cope with
the rate of metrics data being generated in these larger
runs. We adjusted the architecture so that parallel data
stores were used for streaming metrics data. Because of
the size of terapixel image computation we started our
collection of metrics at 64 nodes and scaled up to collect
data for runs at 128, 256, 512, 768 and 1024 nodes.

Fig. 7. Heat map of total computation time for all tasks computed by
each GPU node in the 1024 run, median is 50% grey, white is
nodes executing for more time and black nodes for less time, we
expect the random distribution of totals shown as individual task
times vary.

Recalling issues in the pilot runs with slow tasks not

running on the GPU we confirmed runs were successful by
analysing the spread of task run times and the sum of
compute time for all tasks on each node. This time there
were no outlier tasks in any of the runs. The total compute
time per node is shown in Fig. 7 as a heatmap for the
1024 run. As expected, this shows a random spread of
total compute time resulting from the natural variations in

individual task compute times. However, the results for
the 768 run revealed that four nodes had significantly
lower total compute values. Analysing total compute time
per node across all runs showed the same behaviour in
run 256. This turned out to be a standard behavior where
Azure can deallocate and then restore a small number of
nodes, in both cases in groups of four. The time taken for
this reallocation was approximately twenty minutes of real

time, hence those nodes showed significantly lower com-
pute time totals compared to their peers. In order to ac-
count for this behaviour we calculated the normalised
number of nodes for the scaling calculations, based on
the missing compute time, as shown in Table 5.

Fig. 8. The speedup ratio plotted for the terapixel compu-
tation from 64 to 1024 NC6v3 V100 GPU nodes, the
speedup shows close to linear scaling achieving 98% effi-
ciency at 1024 nodes.

Using the normalised number of nodes for each run we

TABLE 5
TERAPIXEL NORMALISED PERFORMANCE DATA (V100)

Run
Run
Time (s)

Lost
Time (s)

Lost
Nodes

Normalised
Nodes

64 45632 0 0.000 64.0
80 36567 0 0.000 80.0
96 30900 0 0.000 96.0

112 26551 0 0.000 112.0
128 22778 0 0.000 128.0
256 11469 5467 0.477 255.5
512 5726 0 0.000 512.0
768 3824 5896 1.542 766.5

1024 2901 0 0.000 1024.0

The final column is the normalised number of nodes after ac-
counting for dropped and reinstated nodes in runs 256 and 768,
this repeats the pilot runs from 64 to 128 using V100 nodes and
then scales up to the maximum tested 1024 nodes.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 128 256 384 512 640 768 896 1024

Sp
ee

du
p

ra
tio

 fr
om

 6
4

no
de

s

Normalised number of compute nodes
idealSpeedup measuredSpeedup

NEWCASTLE UNIVERSITY

are able to plot the scaling graph in Fig. 8. The shows the
terapixel calculation scales to make good use of from 64
to 1024 nodes with a calculated efficiency of 98%, utilizing
14 of the maximum 14.3 petaFLOPS available.

An important ends-based performance measure is the
wall clock time to compute an answer [16]. The total com-
pute time for all tasks in one terapixel image varies slight-
ly from run to run. To estimate the wall clock time to run
the terapixel image on a single NC6v3 node we averaged
across the total task compute time for each run, resulting
in an estimate of 2,940,581 seconds or approximately 34
days of compute time. This compares to 45,632 seconds
or 12.7 hours on 64 nodes and to 2,901 seconds or 48
minutes on 1024 nodes, as reported in Table 5.

5.5 Accessible visualization platform
One important outcome for us was that the terapixel visu-
alization was accessible to users on thin client devices.
The aim being to make results from our supercomputer

visualizations open to a range of audiences. Serving the
hierarchical image format from Azure cloud Blob store to
a krpano viewer enabled web page allowed the terapixel
image to be browsed on devices including 24 Mpixel vid-
eo walls, desktop and laptop computers, UHD TVs, tablets,
cell phones and even a gym cycling machine, as illustrated
in Fig. 9. You can try it on your own device at this link [28].

6 DISCUSSION

6.1 Computational performance
The system, as reported above, did scale to use the re-
sources available, it was not ultimately limited by
Amdhal’s law and was able to take advantage of Gus-
tafson-Barsis’ law application scaling to use the all the
resources available efficiently.

However, this success did require software engineering
resources to develop and test the system. A number of
unforeseen hurdles had to be overcome with specialist
help relating to remote systems issues that were difficult
to access or difficult to resolve without cloud supplier in-
tervention. These are likely to be teething issues with new
cloud systems and compared to the procurement and
systems support effort needed to build our own equiva-
lent system were a low barrier to making progress.

The send-image system architecture was successful in
allowing us to deliver the resulting visualization to thin-
clients across the whole spectrum of display types availa-
ble to end-users. Accessibility of results to a wide range of
stakeholders is an important goal for urban data systems.

6.2 Application performance
For end users it is application rather than computational
performance that is of paramount importance. We con-
sider Gustafon’s [16] ends-based metrics below:

The time to compute an answer dropped from an in-
feasible 34 days to a reasonable 48 minutes on the largest
cloud system tested. This fulfills our original end user tar-
get of producing a terapixel image once a day.

The degree of completeness of the answer is more
complex to assess as in photo-realistic graphics we can
always do more. However, we have produced the first ter-
apixel visualization of an urban digital twin and done so
with high quality 3D geometry, rendered using path trac-
ing with a good sampling level of up to 20 rays per pixel,
or a maximum of 20 trillion rays cast.

The maximum feasible problem size we measure by
image resolution in pixels, the cloud enabled the produc-
tion of a terapixel image that would be impractical on a
desktop system. This is also the highest resolution we
need for the current 1.2kmx1.2km city model as we don’t
have urban sensors or city geometry at sub-millimeter
scale.

System reliability is critical in long or large rendering
operations. The self-repairing behavior demonstrated by
the cloud, even though more complex to account for in
scaling calculations, is a benefit. It is something that we
did not have in our private cloud [21] where days of
runtime could be lost while system repairs took place. This
depends on local investment in system support.

Hardware updates from an application viewpoint the
change in the cloud from NVIDIA K80 to V100 GPU nodes
was transparent delivering about three times improve-
ment in performance. This would have been a very signifi-
cant procurement effort for an upgrade to a local super-
computer installation.

Confidential data protection building a send-image ar-
chitecture in the cloud means confidential data, particu-
larly the 3D model of the city was protected. This helped
enforce license restrictions as no model data was sent to

Fig. 9. The hierachical krpano image format for serving the visuali-
zation to users from Azure Blob store allows it to be viewed interac-
tively on a wide range of thin client devices, shown here anti-
clockwise from top are the 8 Mpixel Curtin HIVE cylinder, a Sam-
sung Galaxy S3 and on our local gym cycling machine.

NEWCASTLE UNIVERSITY

client devices, this is in contrast to webGL browser solu-
tions where model data is sent to client devices.

6.4 Energy use and financial cost
On-premises supercomputers require long term commit-
ments to energy and running costs, whereas for cloud
supercomputers we can consider these as one-off costs
for each run. For the terapixel runs we predict that both
energy use and costs should be constant with number of
nodes as the compute time falls linearly with the number
of nodes used, as shown in Fig. 6.

We estimate total energy per run, E, in kWh as

*av normE p r (3)

where pav, is the average power drawn in kW by the

system and, rnorm, is the normalized total run time on n
nodes. The results are shown in Table 6 were as expected
E remains approximately constant across runs.

To understand our experimental costs, we similarly es-
timated total cost per run, C, as

*hr normC c r (4)

where chr is the average cost per hour of the number of

nodes. Table 7 shows costs stay roughly constant as ex-
pected. It is worth noting this doesn’t include develop-
ment time or failed runs, we estimated these factors dou-
bled our costs for this set of experiments, but in a longer
series of production runs would become less significant.

A final ends-based metric from Gustfson is perfor-
mance divided by system cost, which we estimate for each
run as the ratio of pixels per pound spent, PP:

Pix

PP
C

 (5)

 where Pix is one trillion, the total number of pixels in
our rendered image. If our scaling is sub-linear, we will see
this ratio go down and see diminishing returns on our
investment. Because in the terapixel case our scaling is
close to linear PP is approximately constant varying by
less than 5%, as shown in Table 7.

6.3 Future scaling using the cloud
We have demonstrated the ability to scale an application
on current generation GPU technology using the cloud to
over 1000x the performance of a single desktop system.
As application researchers this future scaling allows us to
experiment with creating the software tools that we need
for the next generation of visualization applications. How
far into the future this allows us to plan depends on pre-
dicting how well system performance will improve.

The future of Moore’s law is being challenged and scal-
ing out to the cloud has been suggested as one way to
mitigate the need for continuous hardware improvement.
However, while we have demonstrated the cloud can pro-
vide huge advantage during any single hardware cycle it,
at best, scales up linearly. Over time this could not match
the exponential scaling Moore’s law has delivered. Even if
datacenters could scale exponentially by floor area so
would the power and cooling needs.

Fig. 10. The performance in gigaFLOPS of GPU devices from NVID-
IA since 2008, an exponential regression fits this well allowing pre-
diction of future performance if the same rate of improvement con-
tinues.

Fortunately for GPU system users a range of improve-

ments mean the whole software/hardware stack for
graphics and AI continues to demonstrate exponential

TABLE 6
TERASCOPE SYSTEM ENERGY USE

n
nodes
used

pav

average pow-
er draw (kW)

rnorm
normalised

run time (hrs)

E
total power

(kWh)

64 7.44 41.82 311
80 9.47 33.28 315
96 11.42 27.47 314

112 13.66 22.77 311
128 15.02 20.35 306

Energy use summarised per run on the NC6 K80 nodes, more
nodes use more energy but run for a shorter time so total power
drawn is similar across runs.

TABLE 7
TERASCOPE SYSTEM COSTS

n
Nodes
used

chr

cost per
hour (£)

rnorm

Normalised
run time (hrs)

C
Total

Cost (£)

PP
Pixels/Pound

(millions)

64 42.94 41.82 1796 612
80 53.68 33.28 1787 615
96 64.42 27.47 1770 621

112 75.15 22.77 1711 642
128 85.89 20.35 1748 629

Costs are summarized for each run on the NC6 K80 nodes, the
costs remain similar across runs because the total compute time
required for the terapixel computation is constant.

y = 494.93e0.3248x

R² = 0.9671

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9 10 11 12

G
PU

 p
er

fo
rm

an
ce

 in
 g

ia
FL

O
PS

Years 2008-2018

NEWCASTLE UNIVERSITY

growth [29], as illustrated in Fig. 10. If we use NVIDIA’s
GPU performance to date as a guide and predict forward,
then it should take about twenty years for the petaFLOP
performance we have demonstrated in this paper to be-
come the norm on everyday desktop computers. Technol-
ogies already announced that will contribute to this in-
clude the NVIDIA RTX hardware support for ray tracing
[30] and the Blender 2.8 EEVEE algorithms [31].

7 CONCLUSIONS
We set out to address three goals:

Design a new supercomputer application architecture
for scalable visualization using the public cloud. We deliv-
ered this using Azure APIs, the krpano viewer and our own
task generation and metric monitoring codes.

Produce the first terapixel urban IoT visualization sup-
porting live daily updates. We exceeded this target and
demonstrated we can render these as frequently as every
hour at the same cost as a single node that would take 34
days.

Undertake a rigorous performance evaluation of cloud
supercomputing for visualization applications. We have
demonstrated Gustafson-Barsis’ scaling holds for terapixel
visualization and achieved twenty sample path traced
rendering rates that are equivalent to a real time frame
rate of 200Hz for full HD path tracing.

For the future we could use the system to produce day-
light correct images of the city hourly throughout the day.
We could also use the ray casting power of the system to
produce a lightfield rendering which would allow soft fo-
cus effects in real time without re-rendering and/or light-
field VR/AR display support.

We don’t need more pixels in the current geographic
area but a larger digital twin covering the wider suburban
area around Newcastle-upon-Tyne would be a benefit for
the region. For example, a 33km2 map would require a
petapixel image that would take 33 days rendering on
1024 nodes, setting a future challenge for our cloud archi-
tecture.

Finally, based on our systems experience in this project,
we would support the conclusions in [32] that future
cloud supercomputing projects would benefit from: im-
proved metrics collection, performance visualization
modules, transparent error reporting and simpler purchas-
ing, licensing and cost tracking systems.

8 ACKNOWLEDGEMENTS
Many thanks to the following supporters of this research.
Northumbria VRV Studio for the VNG 3D model of New-
castle. The National Innovation Centre for Data and our
local partners through NICD, Newcastle City Council, for
Azure cloud time. Microsoft UK for their invaluable guid-
ance in using the Azure cloud at supercomputer scale. The
Alan Turing Institute under the EPSRC grant
EP/N510129/1 and for Nicolas Holliman’s Turing Fellow-
ship. The EPSRC UKRIC project for funding and supporting
the Newcastle Urban Observatory. Siemens UK, in Poole
for sponsoring Manu Antony’s EPSRC iCASE award.

9 REFERENCES

[1] P. James, R. Dawson, N. Harris, and J. Joncyzk, “Urban
Observatory Environment Data.” Newcastle-upon-Tyne,
2014.

[2] E. W. Bethel, H. Childs, and C. Hansen, High Performance
Visualization: Enabling Extreme-Scale Scientific Insight. CRC
Press, 2012.

[3] Reinfeld Klaus, “krpano.com,” krpano Gesellschaft mbH.
[Online]. Available: https://krpano.com/. [Accessed: 02-Jan-
2019].

[4] Blender Online Community, “Blender 2.79 Reference Manual
— Blender Manual.” [Online]. Available:
https://docs.blender.org/manual/en/latest/. [Accessed: 02-
Jan-2019].

[5] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual
exploration of big spatio-temporal urban data: A study of
new york city taxi trips,” IEEE Trans. Vis. Comput. Graph., vol.
19, no. 12, pp. 2149–2158, 2013.

[6] M. Batty, “Digital twins.” SAGE Publications Sage UK:
London, England, 2018.

[7] J. Bolton, A, Enzer, M, Schooling, “The Gemini Principles.”
Centre for Digital Built Britain and Digital Framework Task
Group, Cambridge.

[8] G. Boulton et al., “Science as an open enterprise,” R. Soc.,
2012.

[9] A. Cairo, The truthful art: Data, charts, and maps for
communication. New Riders, 2016.

[10] D. Agarwal et al., “Data-intensive science: The Terapixel and
MODISAzure projects,” Int. J. High Perform. Comput. Appl.,
vol. 25, no. 3, pp. 304–316, 2011.

[11] Y. Feng et al., “Terapixel imaging of cosmological
simulations,” Astrophys. J. Suppl. Ser., vol. 197, no. 2, p. 18,
2011.

[12] Microsoft Azure, “Azure Windows VM sizes,” 2018. [Online].
Available: https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-general. [Accessed: 02-Jan-2019].

[13] AWS, “Amazon Elastic Graphics - Features.” [Online].
Available: https://aws.amazon.com/ec2/elastic-
graphics/features/. [Accessed: 02-Jan-2019].

[14] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in
Proceedings of the April 18-20, 1967, spring joint computer
conference, 1967, pp. 483–485.

[15] J. L. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM,
vol. 31, no. 5, pp. 532–533, 1988.

[16] J. Gustafson, “Teraflops and other false goals,” IEEE Parallel
Distrib. Technol. Syst. Appl., vol. 2, no. 2, pp. 5–6, 1994.

[17] N. S. Holliman, C.-M. Wang, and P. M. Dew, “Mistral-3:
parallel solid modelling,” Vis. Comput., vol. 9, no. 7, pp. 356–
370, 1993.

[18] J. Chen, I. Yoon, and W. Bethel, “Interactive, internet delivery
of visualization via structured prerendered multiresolution
imagery,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 2, pp.
302–312, 2008.

[19] N. Holliman and P. Watson, “Scalable Real-Time
Visualization Using the Cloud,” IEEE Cloud Comput., vol. 2,
no. 6, pp. 90–96, 2015.

NEWCASTLE UNIVERSITY

[20] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J.
M. Ogden, “Pyramid methods in image processing,” RCA
Eng., vol. 29, no. 6, pp. 33–41, 1984.

[21] S. Dowsland, M. Turner, and N. Holliman, “A Scalable
Platform for Visualization Using the Cloud,” in International
Conference on Computer Games, Multimedia & Allied
Technology (CGAT). Proceedings, 2017, p. 54.

[22] Red Hat, “How Ansible Works | Ansible.com.” [Online].
Available: https://www.ansible.com/overview/how-ansible-
works. [Accessed: 02-Jan-2019].

[23] Microsoft, “Overview of Batch APIs and tools,”
docs.microsoft.com, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/azure/batch/batch-apis-
tools. [Accessed: 27-Jan-2019].

[24] Elasticsearch B.V., “Elastic Stack and Product
Documentation,” 2019. [Online]. Available:
https://www.elastic.co/guide/index.html. [Accessed: 27-Jan-
2019].

[25] NVIDIA, “NVIDIA ® TESLA ® GPU ACCELERATORS The Tesla
family of GPU Accelerators includes: Tesla K80 GPU
Accelerator,” 2014.

[26] NVIDIA, “TESLA V100 Performance Guide.” 2018.
[27] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer,

“November 2018 | TOP500 Supercomputer Sites,” 2018.
[Online]. Available: https://www.top500.org/lists/2018/11/.
[Accessed: 31-Jan-2019].

[28] N. Holliman, M. Antony, S. Dowsland, and M. Turner,
“Terascope,” 2018. [Online]. Available: http://terascope.di-
projects.net/cloudviz-tile-storage-1024/vtour/index.html.
[Accessed: 12-Feb-2019].

[29] Jensen Huang, “Keynote NVIDIA’s 2018 GPU Technology
Conference | The Official NVIDIA Blog,” 2018. [Online].
Available: https://blogs.nvidia.com/blog/2018/03/26/live-
jensen-huang-keynote-2018-gtc/. [Accessed: 10-Feb-2019].

[30] NVIDIA, “TURING GPU ARCHITECTURE.” 2018.
[31] Blender Foundation, “Blender 2.8 — blender.org,” 2018.

[Online]. Available: https://www.blender.org/2-8/#eevee.
[Accessed: 03-Feb-2019].

[32] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha,
and R. Buyya, “HPC cloud for scientific and business
applications: taxonomy, vision, and research challenges,”
ACM Comput. Surv., vol. 51, no. 1, p. 8, 2018.

Nicolas S. Holliman Ph.D. (University of Leeds
1990) Computer Science, B.Sc. (University of
Durham, 1986) joint honours Computing with
Electronics. He worked as a software research-
er at Lightwork Design Ltd., was Principal Re-
searcher at Sharp Laboratories of Europe Ltd,
he was Reader in Computer Science at
Durham University and then Professor of Inter-
active Media at the University of York. He is

currently Professor of Visualization at Newcastle University where he
heads the Scalable Computing research group and is also a Fellow
of the Alan Turing Institute in London. He has published academic
articles and patents in visualization, human vision, computer vision,
highly parallel computing and autostereoscopic 3D display systems.
He is a member of the IS&T, the ACM, a fellow of the Royal Statisti-
cal Society and a member of the IEEE Computer Society.

Manu Antony B.Eng. Electrical, Electronics and
Computer Engineering (Newcastle University
2014). Since 2016 he has been an EPSRC
iCASE award PhD student in data visualization
sponsored by Siemens Ltd, Poole, UK. He has
worked both in the tech industry and the finance
industry.

James Charlton Ph.D. (Northumbria University,
2011), Architectural Technology B.Sc. (North-
umbria University, 2006). He has worked as a
Research Assistant, Research Fellow and is
now a Senior Lecturer in Architecture at North-
umbria University, heading up the VRV Studio
and VNG city model. James has published arti-
cles in; digital visualisation, virtual city modelling,
performance analysis and urban design, he

continues to develop his research in these themes.

Stephen Dowsland M.Sc. (Newcastle Universi-
ty 2009) Town Planning, B.A. Hons (Northum-
bria University 2007) Geography. He worked in
local government town planning before specialis-
ing in mapping and front-end web development
working at British Airways as part of the major
incident planning team. He joined Newcastle
University as a Research Software Developer
specialising in scalable cloud architectures. He

currently works at the National Innovation Centre for Data at New-
castle as a Senior Software Specialist continuing work on scalable
cloud and big data processing.

Phil James B.A.(Newcastle) is a Senior Lecturer
in Engineering. He is currently director of the
Newcastle Urban Observatory and co-leads the
UK National Observatory Programme. His role is
the overall management and direction of the
observatory programme and generating strategic
partnerships with researchers, civic society and
industry. His research is at the intersection of
Engineering and Computer Science with a re-

cent focus on IoT and environmental monitoring and how we apply
emerging technologies to real-world solutions. He is PI on the
EPSRC CORONA (City Observatory Research platfOrm for iNnova-
tion and Analytics) project and participates as Co-I in a research
portfolio of interdisciplinary research worth over £15m. He is a Fel-
low of the Royal Geographical Society.

Mark Turner M.Sc. (Newcastle University
2012), B.Sc. in Computing (Northumbria Univer-
sity 2008leads the Research Software Engineer-
ing team in the Digital Institute at Newcastle.
The team focuses on delivering software engi-
neering expertise for research projects across
the university. In 2016 he was elected as a trus-
tee for the UK Research Software Engineering
Association, contributing to the transformation of

the association into a registered charity in 2018. Since joining the
university in 2012 he designed and implemented software applica-
tions for a number of research projects. Everything from the gamifi-
cation of stroke rehabilitation physical therapy to mobile applications
for alerting stakeholders to damage to rock art carvings and super-
computer scale cloud computing.

