In press, *British Journal of Psychology*

The impact of conspiracy beliefs on a targeted group: Perceived popularity of Jewish-targeted conspiracy beliefs elicits outgroup avoidant behaviours

Daniel Jolley\(^1\)*, Jenny L. Paterson\(^2\) and Andrew McNeill\(^2\)

\(^1\)University of Nottingham, United Kingdom

\(^2\)Northumbria University, United Kingdom

*Corresponding author information:

Dr Daniel Jolley, School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, E-mail: daniel.jolley@nottingham.ac.uk

Data Availability Statement:

All materials and data for each study can be found on the Open Science Framework: https://osf.io/9qnsd/

Author Contributions:

Daniel Jolley: Conceptualization; Formal Analysis; Investigation; Methodology; Writing – Original Draft Preparation; Writing – Review & Editing

Jenny Paterson: Conceptualization; Formal Analysis; Methodology; Writing – Review & Editing

Andrew McNeill: Conceptualization; Methodology; Writing – Review & Editing
Abstract

In three studies with Jewish participants, we explored the consequences of intergroup conspiracy theories on those targeted. In Study 1 (N = 250), perceived Jewish conspiracy theory popularity was positively associated with intergroup threat and negatively associated with the closeness of contact with non-Jewish people. Study 2 (n = 194) employed an experimental design where Jewish participants were exposed to the idea that many (vs. few) non-Jewish people believe in Jewish conspiracy theories. A path model demonstrated that exposure to the many (vs. few) manipulation increased intergroup threat, which was then positively associated with emotional reactions. Intergroup anxiety and ingroup anger were then positively associated with avoidance, whilst ingroup anxiety was positively associated with approach tendencies. Study 3 (n = 201) used the same experimental design, and a path model revealed that conspiracy popularity increased intergroup threat which, in turn, was positively associated with ingroup anger and anxiety. Ingroup anxiety was then associated with intentions to help ingroup members. Notably, conspiracy popularity rendered participants less likely to interact with a non-Jewish partner in a behavioural task. Our work provides evidence that conspiracy beliefs, especially when perceived to be widely held, are likely to significantly impact targeted ingroup members.

Keywords: Conspiracy Theories, Intergroup Threat, Intergroup Relations, Intergroup Emotions, Collective Action
The impact of conspiracy beliefs on a targeted group: Perceived popularity of Jewish-targeted conspiracy beliefs elicits outgroup avoidant behaviours

With research into conspiracy beliefs burgeoning in the last decade, much is now known about the antecedents (Douglas, et al., 2019) and consequences of believing in conspiracy theories (Jolley et al., 2022). Yet, despite the plethora of research exploring conspiracy beliefs, the literature has a significant omission: little is known about the consequences of these beliefs on those who are targeted. Although conspiracy theories are often assumed to only accuse powerful governments of being involved in secret plots and schemes, any group could be perceived as powerful and malevolent and thus painted as conspirators (see Douglas, et al., 2019). In fact, popular conspiracy theories allege that scientists are covering up the success of vaccines for profit (Jolley & Douglas, 2014) and that Jewish people have a controlling but secretive influence over world affairs (Jolley et al., 2020). As these beliefs target – and likely impact – millions of people, a greater focus on the impacts on those attacked by such beliefs is clearly needed.

The consequences of conspiracy theories appear to severely impact the smooth running of societies (Jolley et al., 2022). Conspiracy beliefs may inspire violent extremism (e.g., Rottweiler & Gill, 2020; Jolley & Paterson, 2020) and disengagement with science (e.g., Rutjens, et al., 2018). Moreover, conspiracy beliefs can interfere with intergroup relations; for example, conspiracy theories about Jews are positively associated with anti-Semitic attitudes (e.g., Golec de Zavala & Cichocka, 2012). Such intergroup conspiracy theories can also be experimentally manipulated to increase prejudice and discrimination towards the target group (e.g., Jewish people, Jolley et al., 2020). Together, this research implies that intergroup conspiracy theories are likely to significantly impact those targeted. However, the extant research has tended to have a myopic focus, typically only examining
the consequences of those who subscribe to these conspiracy beliefs – i.e., exploring how those who believe in Jewish conspiracy theories are more likely to discriminate against a Jewish person (Bilewicz et al. 2013). While such research is undoubtedly important, a notable oversight is the dearth of research examining the perspective of the targets of conspiracy theories.

Considering conspiracy theories can target a range of groups, from healthcare workers (doctors and nurses) and Heads of State (Royals and politicians) to entire social groups (Jews and immigrants), millions of people are likely to be vulnerable to such indiscriminate beliefs. Furthermore, because conspiracy beliefs are widely shared on social media (e.g., Vosoughi et al. 2018), they are likely seen by – and impact – many who are part of the target group. Coupled with the fact that people often overestimate the popularity of conspiracy beliefs (Cookson et al., 2021), the perceived popularity of conspiracy beliefs is likely to affect those targeted significantly. That is, perceiving that conspiracy beliefs about your group are widely held may inspire a range of negative outcomes, including feeling threatened, anxious and wanting to avoid outgroup members.

However, it is important to first consider how a conspiracy theory about a group relates to a negative stereotype about that group. First, there are some similarities between the feeling that others hold a conspiracy theory about one’s group and the concept of stereotype threat (see Spencer et al., 2016, for a review of stereotype threat research). When a group member is aware of the stereotype held by an outgroup, this can negatively impact stereotype-relevant task performance. It can also lead to withdrawal from threatening environments (e.g., Walton & Cohen, 2007). However, while there are similarities between knowing about outgroup-held stereotypes and knowing about outgroup-held conspiracy theories about the ingroup, there are also significant differences. Firstly, a conspiracy theory
denotes a very specific type of stereotype, namely high competence and low warmth (see Cuddy, et al., 2008). Secondly, outgroup-held stereotypes would likely form the basis for subsequent conspiracy theories but should not be confused with them. Thirdly, the distinguishing mark of a conspiracy theory in contrast to a stereotype is that a conspiracy theory is a causal explanation of anxiety-inducing events that attribute their cause to a malevolent and powerful group (cf. Douglas et al., 2019). When a group member perceives an outgroup member to hold such a conspiracy belief, they do not merely perceive the outgroup member to hold a negative stereotype (e.g., competent and cold) but to a narrative that attributes causal blame for malevolent events to the ingroup. This means that the sense of threat felt by the ingroup is likely to have distinct cognitive, affective, and behavioural outcomes. Some research has identified “conspiracy stereotypes” in contrast to “trait-stereotypes” and has found that they differ in content and effects; the latter affecting evaluations of individual targets whereas the former affects “Jews as a whole” (Kofta & Sedek, 2005). This suggests that there may be a distinct sense of threat posed by conspiracy beliefs.

Furthermore, it is also important to note that while conspiracy theories are a facet of antisemitism, antisemitism is broader than antisemitic conspiracy theories. Antisemitism, for example, is associated with other clearly erroneous stereotypes of Jews as dirty (e.g., Wierzbicka, 2015). However, conspiracy theories are specifically constructed around the stereotype of Jews as competent (powerful) and cold (malevolent). Manipulating the perceived prevalence of outgroup prejudice (e.g., perceptions that Jews are dirty) may not have the same outcomes as manipulating the perceived prevalence of outgroup-held conspiracy theories (e.g., perceptions that Jews are powerful, malevolent, and secretly responsible for anxiety-inducing events). Based on research in related domains, we can make
novel hypotheses about the psychological processes behind the impact of conspiracy on a target group.

The impacts of conspiracy beliefs can be understood using Intergroup Emotions Theory (IET; Smith, 1993; Mackie & Smith, 2015). This suggests that when individuals identify as a member of a social group (e.g., identify as Jewish), they appraise events in terms of their ingroup memberships and, subsequently, feel and then respond to the group-based threat as an ingroup member rather than as an individual. Such an approach has been useful in examining the impacts of group-based victimisation in a related context – hate crimes (Paterson et al., 2019a, 2019b). This research reveals that ingroup members view attacks against the ingroup as threatening (even when they are not directly involved), and this threat elicits a range of emotions (e.g., anxiety) that, in turn, trigger certain behavioural responses (e.g., avoidance). As intergroup conspiracy theories are similar to hate crimes in that they are often motivated by unjust, group-based hostilities, IET provides a fitting framework to explain the impacts of intergroup conspiracy beliefs.

First, intergroup conspiracy theorising typically incorporates (incorrect) negative assertions and stereotypes of the targeted group, for example, that Jews are secretive and avaricious (Bilewicz, et al., 2013). Ingroup members are likely to appraise such negative beliefs as a threat to the ingroup because they imply that others in society do not only consider them and their group to be outsiders but untrustworthy ones at that. Furthermore, this threat will likely increase when the conspiracy is perceived as popular and widespread. Second, when a group is threatened, ingroup members are likely to respond with both anger towards the injustice (Paterson et al., 2019a) and fear and anxiety about being targeted in such hateful attacks (e.g., Kay et al., 2009; Paterson et al., 2019a). Moreover, these group emotions, in turn, are likely to have behavioural consequences. For example, group-based
anger has been shown to elicit approach tendencies, including greater collective action (Leonard et al., 2011; Mackie et al., 2000; Paterson, et al., 2019a). Meanwhile, group-based anxiety tends to lead to more avoidant tendencies, for example, avoiding contact with outgroup members (e.g., Dumont et al., 2003; Paterson, et al., 2019a). Therefore, it is plausible that the perceived popularity of conspiracy beliefs influences group-based threats, eliciting emotions that direct specific behaviours. The hypothetical model tested in the current research is presented in Figure 1.

Figure 1.

Hypothetical model. All associations are predicted to be positive.

Present Research

In three independent studies with Jews, we sought to extend the literature in numerous and novel ways. First and foremost, we aimed to spotlight the impact of conspiracy beliefs on those targeted. In doing so, we focused on various outcomes, including intergroup threat perception, intergroup emotions, behavioural intentions, and a behavioural measure. Second, we proposed and tested a hypothetical model intended to explain the psychological process behind such impacts. Specifically, in Study 1, Jewish participants reported their perception of how many non-Jewish people believe in Jewish conspiracy theories, alongside feelings of intergroup threat, intergroup anxiety, and avoidance of intergroup contact.

Study 2 extended this work by experimentally inducing the perception that many (vs. few) non-Jewish people believe in Jewish conspiracy theories. Intergroup threat, emotional
reactions, and avoidance of intergroup contact were then measured. Study 3 employed the same experimental design and again measured intergroup threat and emotional reactions but also included collective action intentions and avoidance of intergroup contact behavioural measures. In each study, we predicted that perceived conspiracy popularity would be associated with increased intergroup threat, stronger emotional reactions (i.e., anger and anxiety), and greater outgroup avoidance (i.e., Jewish participants would be less likely to want to interact with a non-Jewish person)\(^1\). All materials and data for each study can be found on OSF: https://osf.io/9qnsd/

Study 1

Study 1 employed a cross-sectional design to explore the links between perceived conspiracy popularity, intergroup threat, personal intergroup anxiety, and preference to avoid non-Jewish people. We predicted a positive relationship between perceived conspiracy popularity and all the outcome measures: intergroup threat, personal intergroup anxiety, and preference to avoid non-Jewish people (\(H1\)). Further, we expected that intergroup threat and personal intergroup anxiety would act as serial mediators between perceived conspiracy popularity and preference to avoid (\(H2\)). Our predictions were pre-registered (https://osf.io/ycb98).

Method

Participants and Design

\(^1\) In each study, and as part of our pre-registrations, we re-ran the models to examine whether strength of Jewish identity acted as a moderator between conspiracy popularity and each of the tested mediators. The measure contained 5 items (e.g., “I identify with other Jewish people”, Study 1 \(\alpha = 85\), Study 2 \(\alpha = 84\), Study 3 \(\alpha = 83\)). Results consistently demonstrated that Jewish identity did not moderate any of the a-pathways (each interaction term \(p > .05\)), or in fact, any pathway. We have footnoted this variable to streamline the paper. The bivariate correlations of this variable can be found in the Supplementary Materials.
Based on recommendations to receive stable correlations (Schönbrodt & Perugini, 2013), 250 Jewish participants (140 men, 105 women, and 5 trans or other, $Mage = 36.08$, $SD = 14.28$) were recruited from Prolific in January 2020. The only inclusion criteria were that participants were Jewish; we took advantage of Prolific’s demographic filter to do this. We asked participants to indicate their religion, and 100% identified as Jewish. Table 1 provides a full breakdown of nationalities. A correlational design was employed. A sensitivity analysis using G*Power based on $N = 250$, $\alpha = .05$ and 80% power means we can detect a correlation $r \geq 0.15$.
Table 1.

Breakdown of nationalities for participants in Study 1 (N = 250).

<table>
<thead>
<tr>
<th>Country</th>
<th>Breakdown (% and count)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>48.8%, n = 122</td>
</tr>
<tr>
<td>Israel</td>
<td>22.40%, n = 56</td>
</tr>
<tr>
<td>UK</td>
<td>20.4%, n = 51</td>
</tr>
<tr>
<td>Canada</td>
<td>3.59%, n = 9</td>
</tr>
<tr>
<td>Australia</td>
<td>0.8%, n = 2</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.8%, n = 2</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.8%, n = 2</td>
</tr>
<tr>
<td>Poland</td>
<td>0.8%, n = 2</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.8%, n = 2</td>
</tr>
<tr>
<td>Spain</td>
<td>0.4%, n = 1</td>
</tr>
<tr>
<td>Austria</td>
<td>0.4%, n = 1</td>
</tr>
</tbody>
</table>

Materials and Procedure

Participants provided informed consent and were first asked to report their perceptions of the popularity of a range of conspiracy theories about Jews. Specifically, participants were provided with six statements (e.g., “Jews achieve their collective goals by secret agreements”, adapted from Bilewicz, et al., 2013) and were asked to indicate the percentage of non-Jewish people who believe each of the statements on a 0% to 100% scale (α = .94).
Intergroup threat was then measured using eight items adapted from Cottrell and Neuberg (2005). We asked participants to read the following sentence, “I believe that conspiracy theories concerning people of the Jewish faith...” and rate their agreement to statements including “pose a physical threat to Jewish people” and “pose a threat to the beliefs and values of Jewish people (α = .93). Each statement was completed on a 7-point scale (1 = strongly disagree, 7 = strongly agree).

Next, participants completed a measure of personal intergroup anxiety examining the extent to which they would feel five specific emotions (e.g., awkward) if they were to meet a person who was non-Jewish in the future (1= not at all, 7 = very much so, α = .63). The group-based threat and anxiety measures were counterbalanced.

Preference to avoid contact with non-Jewish people was then measured using two measures, with each item being on a seven-point scale (1 = strongly disagree, 7 = strongly agree). Participants first completed a measure of active avoidance (adapted from Barlow et al., 2012), which contained three items (e.g., “I would rather spend my lunchtime alone than sit with a group of non-Jewish people, α = 68). For the second measure, participants completed the Social Distance Scale (adapted from Bogardus, 1926), which contained four items (e.g., “I would be willing to accept a non-Jewish person as a close relative by marriage”, α = 75). Scores were recoded, so a higher score represents more social distance. Each of the preference for avoidance measures was counterbalanced. Participants then completed demographics, were debriefed, paid, and thanked.

Results

2 The eight items had initially been thought to consist of two separate scales: realistic and symbolic threat (pre-registration: https://osf.io/ycb98). However, a factor analysis revealed that all the items loaded onto one factor (loadings > .74), and so we combined the items to make one composite ‘intergroup threat’ scale, which is a deviation from our pre-registration but consistent with other articles (e.g., Paterson, et al., 2019).
As some variables exhibited significant skew, a Spearman’s rank correlation was performed on the data (see Table 2). As predicted, and mostly supporting $H1$, perceived conspiracy popularity was significantly positively correlated with group-based threat and preference to avoid non-Jewish people (active avoidance and social distance). However, no relationship was uncovered between conspiracy popularity and personal intergroup anxiety. Personal intergroup anxiety was positively correlated with both measures of preference to avoid intergroup contact, but group-based threat was not correlated with either avoidance measure.
Table 2.

Descriptive statistics and Spearman’s Rank correlations across variables in Study 1 (N = 250).

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conspiracy popularity</td>
<td>34.81%</td>
<td>22.76</td>
<td></td>
<td>.17*</td>
<td>.11</td>
<td>.17***</td>
<td>.15*</td>
</tr>
<tr>
<td>2. Intergroup threat</td>
<td>5.18</td>
<td>1.33</td>
<td>-</td>
<td>-.10</td>
<td>-.01</td>
<td>-.02</td>
<td></td>
</tr>
<tr>
<td>3. Personal intergroup anxiety</td>
<td>2.02</td>
<td>1.06</td>
<td>-</td>
<td>.39***</td>
<td>.35***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Active avoidance</td>
<td>1.53</td>
<td>0.99</td>
<td>-</td>
<td></td>
<td>.33***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Social distance</td>
<td>1.38</td>
<td>0.81</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. *p < .05. ***p < .001.

Path Model³

We next tested our hypothetical model in which the perceived popularity of conspiracy beliefs was assumed to be serially associated with group-based threat, intergroup anxiety, and then to the two measures assessing preferences to avoid intergroup contact (which were covaried in the model). We used Mplus with the MLR estimator, which is robust to non-normality (Muthén & Muthén, 2017). The model showed acceptable fit, $\chi^2(5) = 13.15$, $p = .022$; CFI = .96, SRMR = .07 (Hu & Bentler, 1999). Mirroring the correlational findings, Figure 2 shows that the perceived popularity of conspiracy beliefs was positively associated

³ We also explored country-level differences and note that Israeli Jews differed from Jews elsewhere on some of the variables (e.g., feeling more anxiety and wanting more social distance). However, when Israeli Jews were removed from the analysis, the path model remained very similar to the one reported in Figure 2. The full country-level analyses are reported in the Supplementary Materials.
with intergroup threat, and personal intergroup anxiety was associated with both preferences to avoid intergroup contact. However, the unexpected lack of an association between intergroup threat and anxiety meant the serial mediations were non-significant and thus, $H2$ was not supported (active avoidance indirect effect $b = .000$, 95% CIs: -.001, .000; social distance indirect effect $b = .000$, 95% CIs: -.001, .000).

Study 1 provides preliminary evidence that conspiracy beliefs negatively impact those targeted. Perceiving ingroup-related conspiracy beliefs as popular is associated with negative intergroup outcomes, including feeling threatened and being more likely to want to avoid intergroup contact ($H1$). While these findings are the first to show the potential impacts of conspiracy beliefs on those targeted, the link between perceived conspiracy popularity and preferences to avoid intergroup contact was not explained by our proposed model, thus not supporting $H2$. Indeed, the lack of association between personal intergroup anxiety and the perceived popularity of conspiracy beliefs and intergroup threat was unexpected. Furthermore, the correlational nature of the study raises questions about causality. To address these unexpected findings surrounding the role of personal intergroup anxiety and provide more confidence in the directionality of the associations, Study 2 aimed to replicate and extend the results using an experimental design that included additional emotional reaction measures.
Figure 2.

Path model testing the serial mediation in Study 1 (N = 250).

Notes. Standardised coefficients presented. Dotted line indicates a tested but non-significant association. ***p < .001.
Study 2

In Study 2, we aimed to provide experimental evidence of the impact of the perceived popularity of ingroup-related conspiracy theories on intergroup threat, personal intergroup anxiety, and preferences to avoid intergroup contact. Furthermore, as there was an unexpected lack of association between personal intergroup anxiety and the perceived popularity of conspiracy beliefs and group-based threat, we sought to test other group-related emotions that may explain the associations hypothesised in Figure 1. In Study 1, we focused on personal emotions – that is, the feelings of (personal) anxiety in meeting outgroups. However, sharing social group memberships also fosters emotional bonds with others in the ingroup, and so individuals may feel emotions on behalf of other ingroup members – and react accordingly (e.g., Smith, 1993). Thus, individuals are not just motivated by their own group-based emotions. They are influenced by how they think others in the group feel. As such, when individuals believe other ingroup members feel anxiety about a situation, they will likely avoid that context. Furthermore, when fellow ingroup members are perceived to be angry, this ingroup anger is likely to lead to approach tendencies (e.g., less avoidance; Paterson et al., 2019b). In Study 2, we make identification with their group salient throughout the study, which would lead to a shared experience of ingroup emotions (Moons, et al. 2009).

We, therefore, predicted that Jewish participants who were exposed to an experimental manipulation that argued many (vs. few) non-Jewish people believed in Jewish-targeted conspiracy theories would report a wide range of negative impacts, specifically higher feelings of intergroup threat, personal intergroup anxiety, perceived ingroup anger and anxiety, and a preference to avoid contact with a non-Jewish person (H1). We also hypothesised that popularity exposure would impact both measures of intergroup avoidance (active avoidance and social distance) via a serial mediation in which exposure to the many
(vs. few) manipulation would increase intergroup threat which, in turn, would be associated with stronger emotions that would subsequently impact on avoidant intentions (H2). For the latter associations, we believed that personal intergroup anxiety and perceived ingroup anxiety would be positively associated with avoidance, while perceived ingroup anger would be negatively associated with avoidance. Study 2 was pre-registered (https://osf.io/8u4sa).

Method

Participants and Design

Based on recommendations for comparing two groups (N = 200, Brysbaert, 2019) and oversampling due to anticipating potential exclusions based on pre-registered exclusion criteria, 210 Jewish participants were recruited from Prolific between June and July 2020, though one participant dropped out before answering any questions (67 men, 130 women, 11 trans and 1 who would rather not say, $M_{age} = 30.33, SD = 12.73$). All participants were based in the USA, and the inclusion criteria set on Prolific were that they identified as Jewish and had not participated in Study 1. As a pre-registered manipulation check, participants were asked to indicate which portion of non-Jewish people were argued to believe that Jews were involved in international events in the manipulation text, with answers being the majority (“many”), “minority” (few), or unsure. Participants who selected the incorrect corresponding condition were excluded ($n = 15$). Failed manipulation checks did not significantly differ between experimental conditions ($n_{majority} = 11$ vs. $n_{minority} = 4$, $\chi^2(1) = 3.59, p = .058, \phi = -.13$). The useable sample was 194 (59 men, 123 women, 11 trans and 1 who would rather not say, $M_{age} = 30.51, SD = 12.56$). An experimental design was employed where there were 93

4 In our pre-registration, we planned to run a multiple mediation with intergroup threat and emotions as mediators (a four multiple mediator model) predicting avoidance of contact (outcome). However, a more theoretically appealing model based on previous research (e.g., Paterson, et al., 2019a, 2019b) proposed a serial mediation (popularity -> intergroup threat -> emotions -> behaviours). We therefore instead tested our hypothesis using a path model.
participants in the majority condition and 101 in the minority. A sensitivity analysis using G*Power based on $n = 194$, $\alpha = .05$ and 80% power means we can detect Cohen’s $d \geq 0.36$ (or $np^2 \geq 0.03$).

Materials and Procedure

After providing informed consent, participants then read an article arguing that either many non-Jewish people believe in Jewish conspiracy theories (many condition) or that few non-Jewish people believe (few condition). Participants were asked to “read a short excerpt from a recent Internet article about Jewish involvement in international events” in both conditions. Adapting an experimental manipulation used in Jolley et al. (2020), participants in the majority condition were provided with an article that suggested many non-Jewish people believe that Israel orchestrated attacks on the Twin Towers on 11 September 2001. The minority condition was based on the same event but differed by arguing that few non-Jewish people believed that account of events. An extract from those articles is as follows:

“...A recent representative survey found that [(the majority of) vs. (only a minority of)] non-Jewish people believe that many Jewish employees in the Twin Towers were not at work on September 11th, suggesting that they were pre-warned by Israeli intelligence that the attacks were going to happen....”

“...Perhaps unsurprisingly, therefore, a recent representative poll of non-Jewish people showed that a [(majority of 58%) vs. (minority of 12%)] believed that Jewish people have been in control of other international affairs for decades...”

The term ‘conspiracy theory’ was not used in either article. Participants were randomly allocated to conditions by Qualtrics. The majority and minority percentages used in the manipulation were derived from the average percentage of non-Jewish people perceived to
believe Jewish conspiracy theories in Study 1, +/- the standard deviation (i.e., M 34.81% +/- SD 22.76%).

Next, participants completed a measure of perceived ingroup emotional reactions to the article (adapted from Paterson et al., 2019a). Participants were asked to indicate how much they believed Jewish people would feel a series of emotions. Three emotions were anxiety-based (“afraid”; “anxious”, “alarmed”, $\alpha = .86$) and two anger (“angry”; “outraged”, $r = .77$, $p < .001$), all completed on a 7-point scale (1 = not at all, 7 = extremely). Intergroup threat ($\alpha = .94$), personal intergroup anxiety ($\alpha = .76$), active avoidance ($\alpha = .69$), and social distance ($\alpha = .83$) were then measured as in Study 1. The emotional reactions and intergroup threat were presented first (counterbalanced), followed by the preferences to avoid measures (counterbalanced).

As a manipulation check, at the end of the study, participants were asked to answer the following: “In the article that you read at the start of the study, it argued that a certain portion of non-Jewish people believed that Jews were involved in international events. What was the portion?” The answers were either a) Majority (“many”), b) Minority (“few”), or c) “Not Sure”. Participants were asked to complete the Jewish conspiracy belief measure as in Study 1 ($\alpha = .94$) as a second manipulation check. Finally, participants provided demographic information and were debriefed, paid, and thanked.

Results

Manipulation Check

5 Participants were also asked to indicate how many non-Jewish people believed in Jewish COVID-19 conspiracy theories. Participants completed six items (e.g., “Jews are using COVID-19 to gain control of world governments”) on a 0% to 100% scale ($\alpha = .98$). This variable resulted in significant skew, so was not included as a third manipulation check.
As a further pre-registered manipulation check, we conducted a t-test comparing the experimental conditions (many vs. few) on participants’ perceptions about the belief in Jewish conspiracy theories. Exposure to the ‘many’ experimental condition resulted in a higher perception that Jewish conspiracy theories are popular among non-Jewish people ($M = 35.44\%, SD = 21.98$) than in the ‘few’ condition ($M = 19.60\%, SD = 14.64$, $t(192) = 5.950$, $p < .001$, $d = .86$. The manipulation was therefore successful.

Experimental Differences

Next, a one-way MANOVA was conducted to examine the effect of the experimental condition (many vs. few) on each of the measured variables. The overall Pillai’s Trace was significant $F(6,187) = 3.54$, $p = .002$, $n^2 = .10$ and, as shown in Table 3, participants in the ‘many’ condition indicated significantly higher levels of intergroup threat and perceived ingroup anger than participants in the ‘few’ condition (partly supporting $H1$). No significant differences were shown between the conditions on personal intergroup anxiety, perceived ingroup anxiety, and preferences to avoid contact measures.
Table 3.

One-way MANOVA and descriptive statistics for the experimental conditions in Study 2 (n = 194).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Many (n = 93)</th>
<th>Few (n = 101)</th>
<th>F</th>
<th>p</th>
<th>np²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergroup threat</td>
<td>5.09 (1.27)</td>
<td>4.19 (1.59)</td>
<td>18.87</td>
<td>< .001</td>
<td>.09</td>
</tr>
<tr>
<td>Personal intergroup anxiety</td>
<td>3.30 (1.32)</td>
<td>3.05 (1.29)</td>
<td>1.77</td>
<td>.19</td>
<td>.01</td>
</tr>
<tr>
<td>Perceived ingroup anger</td>
<td>5.70 (1.29)</td>
<td>5.15 (1.45)</td>
<td>7.73</td>
<td>.006</td>
<td>.04</td>
</tr>
<tr>
<td>Perceived ingroup anxiety</td>
<td>4.89 (1.29)</td>
<td>4.60 (1.38)</td>
<td>2.14</td>
<td>.15</td>
<td>.01</td>
</tr>
<tr>
<td>Active avoidance</td>
<td>2.20 (1.22)</td>
<td>1.97 (1.02)</td>
<td>2.18</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td>Social distance</td>
<td>1.93 (0.97)</td>
<td>1.89 (0.86)</td>
<td>0.10</td>
<td>.75</td>
<td>.01</td>
</tr>
</tbody>
</table>

Path Model

As in Study 1, we next used Mplus (Muthén & Muthén, 2017) to test the hypothesised model (H2) using 5000 bootstrap samples and 95% CIs and included the two new emotional reaction measures. We covaried variables on the same level (i.e., all the emotions together), and the model illustrated in Figure 3 showed excellent fit, χ²(7) = 6.67, p = .46; CFI = 1.00, SRMR = .02 (Hu & Bentler, 1999).

As predicted, reading that many (vs. few) outgroup members believe in ingroup-related conspiracy beliefs increased feelings of intergroup threat. This threat, in turn, was positively associated with all three emotional reactions: personal intergroup anxiety, perceived ingroup anger, and perceived ingroup anxiety. As expected, personal intergroup anxiety was then associated with both measures of preferences for intergroup avoidance. The pathways between experimental condition to the preference for avoidance measures via
intergroup threat and then personal intergroup anxiety were both significant, thus providing further support for the hypothesised model: indirect effect of experimental condition on active avoidance \((b = .034, 95\% \text{CIs: } .015, .064) \) and social distance \((b = .025, 95\% \text{CIs: } .009, .049) \), respectively, via threat and personal intergroup anxiety.

There was less support, however, for the hypothesised roles of the other two perceived ingroup-focused emotions (thus only partly supporting \(H2 \)). Perceived ingroup anger and perceived ingroup anxiety were not associated with social distance, and thus the indirect effects were non-significant (indirect effect of experimental condition on social distance via threat and ingroup anger \(b = -.001, 95\% \text{CIs: } -.029, .025 \); indirect effect of experimental condition on social distance via threat and ingroup anxiety \(b = -.007, 95\% \text{CIs: } -.038, .017 \)). Nevertheless, the variables were found to be significant mediators to active avoidance, albeit in the opposite directions to the ones hypothesised. In the serial mediation model (depicted in Figure 3), perceived ingroup anger was a significant positive mediator to active avoidance (indirect effect \(b = .027, 95\% \text{CIs: } .005, .065 \)), while perceived ingroup anxiety was a significant negative mediator to active avoidance (indirect effect \(b = -.029, 95\% \text{CIs: } -.070, -.005 \)).

Whilst unexpected, these results likely uncover an intriguing effect. If an individual believes other Jews will feel angry, they may want to show solidarity and avoid the outgroup. Whereas if they believe other Jews feel anxious, they may want to approach the outgroup to show them that they have nothing to fear and break down barriers. This important distinction likely explains the divergence in the direction of effects and why ingroup emotions only predict general avoidance but not avoidance of personal social connections (i.e., having an outgroup member as a personal friend). Indeed, supporting such an assertion, our results also provide evidence that when participants felt personally anxious, they were likely to want to avoid all contact with outgroups. Thus, such effects showcase the difference between what
you feel and how you think other members of your ingroup may feel, resulting in different avoidance behaviours (approach vs. avoid).

It is also worth noting that the means for the avoidance measures in Studies 1 and 2 are very low. This may be explained by social desirability or, perhaps, being a minority group highlights the difficulty of avoiding social contact with majority group members. Therefore, in Study 3, we wanted to expand the research programme in two distinct ways: (1) examine how perceptions of ingroup reactions (i.e., anger and anxiety) influence ingroup-related behavioural intentions (i.e., collective action); perceived ingroup anxiety and anger should increase collective action tendencies. Furthermore, owing to the limits/floor effects of the avoidance measures, we employed an actual behavioural avoidance measure. This change from intention to actual behaviour is notable. Research typically focuses only on behavioural intentions in the literature on conspiracy theories (Jolley et al., 2022). Testing our hypotheses with a novel behaviour measure increases the rigour of our investigation.
Figure 3.

Path model testing the hypothesised serial mediation in Study 2 (n = 194).

Note. Standardised coefficients presented. Dotted lines indicate tested but non-significant associations. ***p < .001, **p < .01.
Study 3

We predicted (https://aspredicted.org/RGQ_BH6) that exposure to many (vs. few) believing in ingroup-targeted conspiracy beliefs would increase intergroup threat, intergroup emotions, and collective action intentions (H1a) and make participants less likely to want to interact with a non-Jewish fellow participant (H1b). Furthermore, we predicted a serial mediation in that conspiracy popularity exposure would increase intergroup threat, that is then associated with intergroup emotions, followed by collective action intentions (H2a) and avoidance of contact (H2b).

Method

Participants and Design

The same recruitment strategy was employed as in Study 2, where 209 American Jewish participants were recruited from Prolific in July 2022, but two were removed as they provided no data (69 identifying as a man, 127 identifying as a woman, 10 non-binary and 1 who would rather not say, $M_{\text{age}} = 36.58, SD = 16.52$). The inclusion criteria set on Prolific were that the participants were Jewish and had not participated in Study 1 or 2. The same pre-registered manipulation check was used as in Study 1, where 6 participants were excluded: with no significant differences in failed manipulations across the conditions: $n_{\text{majority}} = 4$ vs. $n_{\text{minority}} = 2$, $\chi^2(1) = .59, p = .44, \varphi = -.05$. The useable sample was 201 (66 identified as man, 124 identified as woman, 10 non-binary and 1 who would rather not say, $M_{\text{age}} = 30.81, SD = 16.54$). An experimental design was used, with 103 participants in the majority condition and 98 in the minority. A sensitivity analysis using G*Power based on $n = 201, \alpha = .05$ and 80% power means we can detect Cohen’s $d \geq 0.35$ (or $np^2 \geq 0.03$).
Materials and Procedure

After providing informed consent, participants were asked to complete demographic questions before being randomly allocated by Qualtrics to either the ‘many’ or ‘few’ condition, as in Study 2. Participants then completed measures of intergroup threat ($\alpha = .94$) and emotional reactions (perceived ingroup anxiety [two-items, $r = .80$, $p < .001$] and perceived ingroup anger [$\alpha = .88$]), as in Study 2 which were counterbalanced. To assess the impacts on ingroup-directed behaviours, participants were then asked to complete a measure of supportive (collective) actions towards the ingroup (Jewish community), measured with three items (e.g., “Joining and/or increasing my participation in groups and charities that help Jewish people”, $\alpha = .95$) from 1 (extremely unlikely) to 7 (extremely likely).

Next, as a more realistic measure of contact avoidance, ostensibly less prone to social desirability effects, we used a behavioural measure of interacting with another participant (using a similar procedure as in Meleady, 2021). Participants were prepared for this interaction as they were informed in the Information Sheet that “During the study, you will also interact with one other participant online”. When the interaction ‘began’, participants were told that they would be randomly assigned to chat with another participant to discuss the topic of the study but that they could select a different participant before entering the chat if they would prefer to chat with someone else. Participants were then provided basic details of the “other participant”: age, gender, religion, and location. The age, gender and location were matched to the participant’s demographics via a function on Qualtrics, but the religion was “Christian” (outgroup). They were then asked: “Would you like to continue with the interaction or select a new partner?”. Participants who were happy to continue the interaction were asked if they would answer some more questions whilst the other participant “got ready”; in reality, no interaction took place, and they continued with the survey.
However, if the participant selected a new partner, they were given the same information as before (age, gender and location), but this time the religion was “Judaism” (ingroup). They were then asked if they would like to continue with the interaction or select a new partner. Irrespective of their response, they were asked to complete some questions whilst the other participant “got ready”. The measure was coded as 0 = no avoidance (of outgroup member), 1 = outgroup avoidance (but a willingness to interact with ingroup member), and 2 = general avoidance (of both outgroup and ingroup members). The avoidance of contact and collective action measures were counterbalanced. Participants then completed the manipulation check measures as in Study 2 before being debriefed (where they were informed that no interaction with another participant was taking place; the debrief can be found on our OSF), thanked and paid for their time.

Results

Manipulation Check

As in Study 2, we conducted a t-test comparing the experimental conditions (many vs. few) on belief in Jewish conspiracy theories as a further manipulation check. Exposure to the ‘many’ experimental condition resulted in a higher perception that Jewish conspiracy theories are popular ($M = 44.49\%, SD = 20.82$) than in the ‘few’ condition ($M = 17.34\%, SD = 12.41$, $t(198) = 11.147, p < .001, d = 1.58$. The manipulation was, therefore, successful.

Experimental Differences

Next, a MANOVA was conducted where the experimental condition (many vs. few) was the independent variable, and the measured variables were the dependent variables. The overall Pillai’s Trace was significant $F(4,196) = 7.20, p < .001, \eta^2 = .13$. As shown in Table 4 and providing support for $H1a$, participants who were exposed to the ‘many’ condition (vs.
few) reported heightened feelings of intergroup threat, perceived ingroup anger, and perceived ingroup anxiety and indicated a greater willingness to engage in collective action.

Furthermore, a chi-square test of independence was conducted to test $H1b$ and examine the link between experimental condition (many vs. few) and whether participants interacted with a non-Jewish person (no avoidance vs. outgroup avoidance). We removed participants who demonstrated a general avoidance ($n = 3$), as these participants were those who did not want to interact with either a non-Jewish (outgroup) or Jewish (ingroup) partner. Thus, the analysis focused purely on the no avoidance vs. outgroup avoidance categories6. A significant chi-square test was uncovered, $\chi^2(1, N = 198) = 4.178, p = .041, \phi = .15,$ supporting $H1b$. Participants who viewed the ‘many’ condition were more likely to avoid an intergroup interaction and then select a new partner [who was Jewish] ($n = 12$) compared to participants who viewed the ‘few’ condition ($n = 4$).

6 We also re-ran the analyses focusing on no avoidance vs. avoidance and similarly found a significant chi-squared test ($\chi^2(1, N = 201) = 6.446, p = .011$).
Table 4.

One-way MANOVA and descriptive statistics for the experimental conditions in Study 3 (n = 201).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Many (n = 103)</th>
<th>Few (n = 98)</th>
<th>F</th>
<th>p</th>
<th>np²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intergroup threat</td>
<td>5.53 (1.27)</td>
<td>4.39 (1.76)</td>
<td>28.05</td>
<td>< .001</td>
<td>.12</td>
</tr>
<tr>
<td>Perceived ingroup anger</td>
<td>5.77 (1.33)</td>
<td>4.99 (1.45)</td>
<td>15.75</td>
<td>< .001</td>
<td>.08</td>
</tr>
<tr>
<td>Perceived ingroup anxiety</td>
<td>5.35 (1.45)</td>
<td>4.53 (1.60)</td>
<td>14.65</td>
<td>< .001</td>
<td>.07</td>
</tr>
<tr>
<td>Collective action</td>
<td>4.60 (1.56)</td>
<td>4.09 (1.74)</td>
<td>4.86</td>
<td>.024</td>
<td>.03</td>
</tr>
</tbody>
</table>

Path Model

Replicating the earlier studies, we used MPlus (Muthén & Muthén, 2017) to test the hypothesised model using 5000 bootstrap samples and 95% CIs, and included the two new outcome measures (collective action and actual outgroup avoidance), along with perceived ingroup anger and ingroup anxiety as the second level mediators. We again covaried variables on the same level, and the model illustrated in Figure 4 showed excellent fit, \(\chi^2(6) = 24.41, \ p < .001; \ CFI = .95, \ SRMR = .049 \) (Hu & Bentler, 1999).

As predicted and replicating Study 2, reading that many (vs. few) outgroup members believe in ingroup-related conspiracy beliefs increased feelings of intergroup threat. This threat, in turn, was again positively associated with perceived ingroup anger and perceived ingroup anxiety. Next, in the new portion of the model, perceived ingroup anxiety positively predicted collective action. Furthermore, the serial mediation from exposure to many (vs. few) believing in ingroup targeted conspiracy beliefs to greater collective action via threat then perceived ingroup anxiety was significant (indirect effect = .07, 95%CIs: .02,.16).
However, the association between perceived anger and collective action was not significant, and actual avoidance was not associated with either anxiety or anger; thus, the indirect effects were not significant either.

The results, therefore, replicate and extend the previous studies. As consistently demonstrated, conspiracy popularity increased the perception of intergroup threat (as in Studies 1 and 2), which were positively associated with intergroup emotions (perceived ingroup anxiety and anger, as in Study 2). Study 3 also demonstrates that ingroup anxiety is associated with ingroup collective action. Notably, we also uncover that conspiracy popularity leads to participants not interacting with a non-Jewish person in a behavioural task. However, we found that intergroup threat and ingroup emotions did not explain this effect. We discuss this in the General Discussion.
Figure 4.

Path model testing the hypothesised serial mediation in Study 3 (n = 201).

Note. Standardised coefficients presented. Dotted lines indicate tested but non-significant associations. ***p < .001. **p < .01.
General Discussion

In three studies with Jewish participants, the links between perceived conspiracy popularity, intergroup threat, emotional reactions, and intergroup avoidance have been explored. We consistently find that believing that ingroup-targeted conspiracy beliefs are widely held is associated with feeling threatened. Experimentally induced conspiracy popularity also made people think other ingroup members would be angry (Studies 2 and 3). Likewise, there was evidence that induced conspiracy popularity increases feelings of personal intergroup anxiety and the perceptions of ingroup anxiety (Study 3), alongside sharpening intergroup behaviours by influencing both preferences for outgroup avoidance (Study 1) and ingroup collective action tendencies (Study 3). Furthermore, we show that conspiracy beliefs can affect actual behaviour – reading that many (vs. few) people believe ingroup-targeted conspiracy beliefs led to more people avoiding contact with an outgroup member (Study 3). Thus, conspiracy beliefs, especially when perceived to be widely held, can have significant affective and behavioural consequences for targeted ingroup members.

Our work, therefore, stresses the importance of also focusing on the targets of conspiracy theories rather than solely on the believers. Of course, it is important to explore the consequences for those who subscribe to conspiracy beliefs - such as intergroup conspiracy exposure increasing prejudice held towards others (Jolley et al., 2020) – but by having such a limited focus, little was subsequently known about the consequences of intergroup conspiracy theories on targeted groups. Therefore, with our research being one of the first to address this oversight, we provide novel insight into how those group members feel and respond. We find consistent evidence that conspiracy popularity elicits threat, emotional reactions and avoidance. Thus, our work is notable because spotlighting these issues has enabled a much broader understanding of the consequences of conspiracy theories.
We also tested the psychological process behind these impacts (see Figure 1). Across all studies, we found that conspiracy beliefs increased perceptions of threat to Jews. Such a consistent finding highlights how conspiracy beliefs can significantly threaten marginalised groups and underscores the harm that conspiracy theories can have for individuals and intergroup relations. This conspiracy-evoked threat is then often, but not consistently, associated with group-based emotions. That is, intergroup threat was associated with perceived ingroup anger and ingroup anxiety in both Studies 2 and 3. Yet, intergroup threat was associated with personal intergroup anxiety in Study 2 but not in Study 1. This may be because of the operationalisation of the measures. Study 1 was a purely correlational design, whereas, in Study 2, intergroup threat was evoked in response to a conspiracy popularity manipulation (reading many vs. few people believe). Directly eliciting intergroup threat is the important distinction between the studies.

When examining the emotion–behaviour link in our model (Figure 1), we uncovered that personal intergroup anxiety was associated with a preference to avoid contact (Study 2). However, we found mixed evidence for the role of perceived ingroup emotions in Study 2. Conspiracy-evoked threat was associated with perceived ingroup anger, which predicted outgroup avoidance. This was unexpected, but other research has explained the anger-avoidance link on the grounds that avoidance may be a behavioural regulation strategy to reduce confrontation (Smith, et al., 2007). An alternative explanation is that perceptions of (others’) ingroup anger may prompt different reactions to personal group-based anger.

Also unexpected was the finding that conspiracy-evoked threat was associated with ingroup anxiety, which predicted outgroup approach tendencies. Study 3 built on this to show that perceptions about the ingroup (particularly ingroup anxiety) are stronger predictors of ingroup-related behaviours than outgroup behaviours in the proposed model (i.e., ingroup
collective action rather than outgroup avoidance). Therefore, our findings also highlight how personal and perceived ingroup emotions impact behaviours differently. Whilst personal anxiety leads to avoidance, perceived ingroup anxiety is associated with outgroup approach behaviours (Study 2) and support for the ingroup (Study 3). Such findings are likely explained by the premise that if people believe other Jews feel anxious, they might be keen to approach the outgroup and help break down barriers. This is consistent with research that shows how nonconformity may occur when a group member feels that the ingroup emotional response is inappropriate (Goldberg et al., 2014). Some participants may feel that ingroup anxiety is an inappropriate response and may want to engage with the outgroup as a way of challenging negative outgroup beliefs. But, when they personally feel anxious, they avoid contact. Thus, when considering intervention levers, there needs to be a careful balance between supporting the targets of conspiracy beliefs and alleviating avoidant behaviours but not implicating the support that ingroup members can provide to each other. Our research provides an important foundation for future research to build on.

Whilst these effects are striking, we did not find evidence of the mechanisms between perceived conspiracy popularity and avoidance of actual contact (Study 3). The behavioural task we included required the participant to interact one-on-one with an outgroup member. As we know from Study 2, when individuals feel personal anxiety towards interacting, they are less likely to interact with a non-Jewish person. However, in Study 3, we did not include a measure of personal anxiety but instead only measured ingroup emotions, which were not associated with the one-on-one interaction. It is probable that if the preamble to the behavioural task highlighted that the participant would be interacting on behalf of their ingroup (Jewish community), ingroup anxiety (but not ingroup anger) might have explained this effect (as in Study 2 with the intention measure). Alternatively, measuring personal
anxiety in Study 3 may have explained the link between conspiracy popularity and avoidance in the interaction. Future research could build on our work and examine these possibilities.

It is also worth noting that there were inconsistent findings for conspiracy popularity and avoidance of outgroup contact between the studies. Study 1 provided cross-sectional evidence of the link, with Study 3 providing crucial experimental evidence that increasing the perceived popularity of the beliefs made participants less likely to want to interact with a non-Jewish partner in a behavioural task. In Study 2, however, we found no differences in the contact measures, though we propose this is due to the measures we employed. The behaviours in Study 2 are likely difficult to change with a simple manipulation; that is, whether participants would have a friend or colleague who is non-Jewish. As the participants were living in the USA and, thus, were a minority and could not easily distance themselves from other non-Jewish people, the measures may not have been sensitive enough to capture the effects of the manipulation. This point is underscored by the means being rather low in Studies 1 and 2 for avoiding contact in real-life (i.e., participants cannot typically avoid contact). Thus, in Study 3, when we employed a behavioural task that provided the participants with a real-world decision to interact or not where they had the autonomy to decide, we uncovered a novel difference between conspiracy popularity and avoidance of outgroup contact. As such, whilst the outcome measure in Study 2 was not optimal for the manipulation text, we addressed this limitation in Study 3 with a behavioural outcome.

However, future research could address other limitations in our work. For example, in Study 1, participants were asked to indicate how many non-Jewish people believe in conspiracy theories. The average belief ($M=34.81\% \pm SD$) was then manipulated in Studies 2 and 3. However, this average is merely the perception of a conspiracy endorsement, not an
actual one. Future research could explore whether the effects replicate when using actual averages of conspiracy endorsement levels in the population.

Further, in Studies 2 and 3, we manipulated the percentage of belief by including a poll of a ‘representative sample’. However, we did not include the source of the sample (i.e., of American citizens). A stronger manipulation would have pinpointed the source and also asked participants to estimate the prevalence of beliefs among non-Jews in their community. Future researchers who may use these experimental tasks could address these limitations of our design. With that said, however, it is plausible that a conspiracy belief espoused by an individual, in-person or in an online scenario, may also have an impact on a target group member. A future research endeavour could explore the nuances between different types of exposure to conspiracy beliefs on emotional and behavioural responses. Similarly, we were unable to explore the underlying processes that link personal ingroup emotions and the perception of other ingroup member’s emotions, and how these link to behavioural responses. Thus, future research could examine the connection between ingroup member’s emotions and individual behaviours, including the degree of self/ingroup overlap and strength of ingroup identification, and how these links may influence subsequent behaviours.

Also, whilst we employed a behavioural measure as part of Study 3, we cannot be certain whether participants truly believed the interaction would happen. In the Information Sheet, we indicated that an interaction would occur in the study. When the interaction began, to increase the realism, the information provided about their partner was the same demographic information participants themselves had provided (age, gender, country they live and religion). Nonetheless, participants completed the questionnaire individually and could not see other participants participating. A more robust measure could be in a lab-based scenario, where the participant could physically see other participants taking part in the experiment and
thus believe an interaction would occur. However, it would be important to ensure such a design includes suspicion checks as a way to ensure that participants have not guessed the true aims of the experiment (i.e., limiting demand effects). Unfortunately, we did not include such checks in the present experiments. Therefore, future research could extend the ecological validity of this behavioural measure. Moreover, we focused on anxiety and anger in our work, but other emotions are likely at play. For example, shame is often felt in ingroup-targeted attacks and can motivate various behaviours (Sheikh, 2014). Thus, future research could also explore how conspiracy popularity increases other relevant emotions, such as shame.

Finally, we argue that the effects demonstrated in our work are not just isolated to Jews. These same impacts – intergroup threat, emotions and avoidance - are likely to be seen in a wide range of targeted groups, from healthcare workers to scientists and other social groups. However, future research could investigate how perceived conspiracy popularity in other groups (such as healthcare workers) impacts how these individuals feel and react, which will underscore the generalisability of our findings. Furthermore, future researchers could explore whether the strength of the impact varies across groups. All things equal, all targets of conspiracy theories may be impacted. However, experiences of past discrimination towards the target group may strengthen (or weaken) the effect. Exploring such a possibility will be an important research endeavour.

In summary, our work provides a new, important perspective on the consequences of intergroup conspiracy theories. In three studies, we have investigated the impact of perceived Jewish conspiracy popularity on ingroup members (Jewish community) and uncovered that perceived popularity is linked with intergroup threat, emotional reactions and avoidance of outgroup contact – both intentions and in an actual behavioural task. We also provide evidence that perceived conspiracy popularity can increase intentions to support fellow
ingroup members. As conspiracy beliefs are widely prevalent on social media (e.g., Vosoughi et al. 2018), our work showcases how this pervasiveness clearly impacts those targeted in conspiracy beliefs. Therefore, our research calls for attention to be directed toward targets of conspiracy theories. While developing interventions to help people resist conspiracy beliefs is vital, understanding the impacts of these theories and developing carefully crafted tools to support those victimised by such beliefs is paramount.
References

