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Abstract

A Lagrangian flow model is used to investigate highly nonlinear, dispersive

waves generated by moving seabed deformation (MSD) of an otherwise hori-

zontal seabed. Applications include free surface wave responses to horizontal

co-seismic displacements and to novel bed-driven wave making systems used in

surfing competitions. This paper considers gravity waves in viscous liquid, with-

out restrictions on wave steepness, dispersion coefficient, and flow regime. Nu-

merical computations are carried out using a Moving Particle Explicit method,

which provides a Lagrangian flow description with far fewer particles than ex-

isting meshless methods. We show that the MSD speed has different effects

in shallow and intermediate water depths. In shallow water, raising the MSD

speed to a transcritical value promotes generation of leading solitary waves as

expected. In supercritical flow, the highly nonlinear dynamics promotes break-

ing of the precursor soliton. In intermediate depth, wave dynamics is dominated

by nonlinearity and dispersion, which act concurrently to generate a large lead-

ing wave that travels faster than predicted by linear theory, followed by a train

of dispersive, short, steep waves. These waves break, even at subcritical val-

ues of MSD speed. We show that strongly nonlinear viscous dynamics occurs

in the presence of a steep seabed deformation. This triggers flow separation,

linked to strong amplification of wave steepness. Finally, we show that an os-
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cillating MSD is capable of generating higher harmonics by means of nonlinear

wave-wave interactions. The model is validated and verified by comparison to

previously published experimental data and approximate analytical solutions.

Keywords: Nonlinear waves, particle methods, computational fluid dynamics,

tsunamis.

1. Introduction

This paper investigates the fully nonlinear dynamics of viscous gravity waves

generated by moving seabed deformation (MSD) over an otherwise horizontal

seabed in shallow and intermediate water depths. Our motivation is as fol-

lows. (i) Although the problem has been studied extensively in the framework5

of weakly nonlinear, long-wave theories [1, 2], investigations considering highly

nonlinear, dispersive wave regimes are scarce [3]. (ii) The idealised geometry

generates robust benchmark cases for further numerical and experimental analy-

sis because waves are generated by a block moving at a prescribed speed, rather

than relying on gravity. Complications are avoided from wave reflection at a10

sloped bed, sudden deceleration at an abrupt transition between an inclined

and horizontal bed, and aquaplaning of the solid block at a smooth transition

[4]. (iii) The problem is relevant to several important practical applications.

For example, the horizontal component of co-seismic displacements contributes

significantly to the wave amplitude of earthquake-generated tsunamis, a sub-15

ject that has not been fully considered to date [5]. A second example concerns

novel wave making systems employed in surfing competitions, where waves are

generated in a controlled environment by a translating seabed deformation [6, 7].

Related work on gravity waves generated by MSD in inviscid liquid has a

long, distinguished tradition. For example, [8], [9] and [10] studied the gener-20

ation of weakly nonlinear solitary waves by an MSD translating at speed u in

shallow water of constant depth h much smaller than the typical wavelength

� such that �2 = (2�h=�)
2 � 1. The wave amplitude � considered by the

foregoing was also much smaller than �, i.e. � = �=�� 1. The MSD moved at
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transcritical Froude number Fr = u=
p
gh = 1��, where g is gravity and �� 125

a small nondimensional parameter. The related problem of weakly nonlinear,

non-dispersive waves excited by a running stream over an obstacle has also

been thoroughly investigated [1, 11, 12]. Recently, Michele et al. [13] developed

a weakly nonlinear, dispersive model of MSD-generated waves at low Froude

number in intermediate water depth, where � � 1 but �2 = O(1). Michele et30

al. showed that nonlinearity sharpens the leading elevation wave propagating

ahead of the MSD, whereas dispersion shortens the wavelength of trailing waves

with respect to the corresponding behaviour in the shallow-water regime.

In this paper, we remove assumptions about wave steepness � and dispersion

coefficient �, and consider gravity wave propagation in a viscous liquid. Few35

studies have examined how viscosity determines the onset of vorticity in MSD

generated waves, limited to shallow water depth [14]. Investigations in this

context are also scarce concerning the onset of breaking [3]. Here we examine

the nonlinear viscous dynamics of free-surface flow generated by MSD in shallow

and intermediate water depths, for subcritical (Fr < 0:8) and transcritical (0:8 <40

Fr < 1:2) Froude numbers, using a Lagrangian description of the fluid flow.

The vast majority of existing numerical models applied to MSD are based

on an Eulerian approach using free surface tracking or capture methods on fixed

or adaptive meshes, a typical example being the volume of fluid (VOF) method.

However, Eulerian methods encounter difficulties in capturing the free surface45

when it undergoes large deformation [15]. Furthermore, mesh methods are

affected by numerical diffusion associated with the discretisation of the advec-

tion term in the governing Navier-Stokes momentum equations [16], particularly

when the flow is driven by moving objects [3, 17]. Another limitation of certain

VOF solvers, such as IHFOAM, is that the dynamic mesh used to model the50

seabed deformation has to be sufficiently smooth, i.e., it cannot have vertical

edges [3]. Finally, close to breaking, the water column may lose continuity, in

which case the free surface elevation cannot be defined. This can cause certain

VOF solvers to have a somewhat arbitrary definition of the free surface [3].

The meshless Lagrangian approach is more robust than Eulerian methods55
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because particles are tracked individually, without any limitation to their move-

ment other than that imparted by physical boundaries. The ability to follow

each flow particle allows accurate simulation of large deformations and violent

flows. The absence of advection terms in the Lagrangian equations of motion

means that such methods are free from numerical diffusion [18]. Furthermore,60

there are hardly any limitations to modelling non-smooth geometries, and appli-

cation of boundary conditions is straightforward [17, 18]. The main drawback of

meshless Lagrangian models is that they require fine discretisation involving a

large number of particles, e.g. O(105�106) for a typical Smoothed Particle Hy-

drodynamics (SPH) simulation of free-surface flow. Consequently such methods65

are computationally very expensive, and therefore less popular in the context

of modelling MSD-generated waves. For example, in the last few decades, few

studies of landslide-generated waves have employed a Lagrangian approach [see

15, 19, 20, 21, 22, and references therein].

In this paper, we develop a Lagrangian Moving Particle Explicit (MPE)70

method, starting from recent work by Renzi & Dias [23] who devised a higher-

order Moving Particle Semi-Implicit (MPS) method to model design waves.

Renzi & Dias compared predictions by their MPS model with those of Didier et

al.’s SPH model and experimental data for breaking waves on a breakwater [24].

The MPS model (with 83,418 particles, 15 hours computational time) was able75

to predict the behaviour of the free surface better and with far fewer particles

than the SPH model (154,735 particles, 80 hours computational time). A draw-

back of the approach taken by [23] is the use of a semi-implicit numerical scheme

for pressure, based on empirical coefficients that require further tuning. In the

present paper, we improve the model of Ref. [23] by using an explicit algo-80

rithm to solve the pressure field. This enables accurate representation of seabed

forcing without requiring empirical pressure coefficients. The MPE model used

herein is accelerated using parallelisation and vectorisation algorithms in MAT-

LAB, which enable robust convergence with reduced computational execution

times of about 50% compared to MPS. The MPE model permits investigation85

of large free-surface deformations and the onset of vorticity, which arise in sit-
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Figure 1: System geometry.

uations where the MSD is irregular or moves at large Froude number. To date,

the majority of Lagrangian MSD models have focused on the early stages of an

evolving 
ow, being ine�cient for large-scale computations [15, 25, 26]. The en-

hanced computational performance of the proposed MPE model allows us also90

to consider long duration wave propagation events.

Section 2 introduces the numerical model and the solution scheme. In Sec-

tion 3, the model is validated and veri�ed against published experimental data

and approximate analytical solutions. Section 4 presents key modelling results,

including the e�ects of viscosity and onset of vorticity for a steep MSD. Con-95

clusions and suggestions for future work follow in Section 5.

2. Numerical model

We present a Numerical Wave Flume (NWF) based on a higher-order MPE

method. Referring to Figure 1, we consider a rigid MSD translating at speed

u(t) in the horizontal x-direction in water of depth h. The MSD generates100

gravity waves, whose free surface elevation above still water level is denoted by

� (x; t ).

2.1. Governing equations

The NWF simulator is based on a Lagrangian description of the 
uid 
ow,

whereby the 
uid domain is discretised into computational particles, each set an105
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initial distance l0 from their immediate neighbours. We consider viscous 
ow of

a weakly compressible 
uid in two dimensions (x; y), with the y-axis pointing

vertically upwards. The horizontal line y = 0 denotes the elevation of the seabed

(without MSD). The model solves the continuity equation

D�
Dt

+ � r � v = 0 ; (1)

and the Navier-Stokes momentum equation110

Dv
Dt

= �
1
�

r p + � r 2v + g; (2)

in which D=Dt is the Lagrangian derivative with respect to time t, � is density, p

is pressure,v = ( u(x; y; t ); v(x; y; t ))T is the 
uid velocity vector, � is kinematic

viscosity and g = (0 ; � g)T is force per unit mass due to the geopotential;g =

9:81 ms� 2 is the acceleration due to gravity.

The governing equations (1){(2) are solved using a weighted-average scheme,115

which requires de�nition of a weight function w(r; r e). Here we use a third-order

spline kernel

w(r; r e) =
�

1 �
r
r e

� 3

if r � r e; w(r; r e) = 0 ; if r > r e; (3)

where r e is an e�ective radius of interaction and r =
p

x2 + y2 is the distance

of a particle located at point (x; y) from the origin. Particles lying outside

the circle of interaction, of radius r e, are not considered in the calculation of120

discretised quantities for the target particle i , see [17, 25]. For a giveni -th

target particle, the sum of weight functions over neighbouring particles de�nes

its particle number density as

ni =
N iX

j 6= i

w(r ji ; r e); (4)

where r ji is the distance between thei -th and j -th particles, and N i is the total

number of particles in the neighbourhood of the target particlei . For simplicity,125

the upper limit N i is implicit in the summations from now on.
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2.2. Numerical solution

Once the 
uid domain is discretised into N particles, the governing equa-

tions (1){(2) are solved by means of a fully explicit algorithm, whereby time is

discretised into M intervals � t = tk+1 � tk , with tk denoting the k-th instant,130

k = 0 ; : : : ; M and t0 = 0. The discretised governing equations are solved nu-

merically using a predictor-corrector scheme. First, thei th particle velocity v i

is calculated at an intermediate time step t � = tk+1 =2, without considering the

pressure gradient:

v �
i = v k

i +
�

�


r 2v

� k

i + g
�

� t; (5)

where135



r 2v

� k

i =
4

P
j 6= l (r

0
jl )2 w

�
r 0

jl ; r e

�
X

j 6= i

�
v k

j � v k
i

�
w(r ji ; r e): (6)

Then the value is corrected by accounting for the pressure contribution:

v k+1
i = v �

i �
1
�

hr pi k+1
i � t: (7)

Eqns (5) and (7) give a time-marching algorithm that determines the velocity

�eld at time tk+1 from the previous time step, provided the pressure is known

for each particle at time tk+1 . Hence, an additional equation is required to

calculate the pressure �eld.140

The original MPS method considers a Poisson pressure equation (PPE) for

incompressible 
uid, leading to a sparse linear system for the pressure on each

target particle [17]. Usually, such a method is subject to strong numerical

instabilities. Suppression of spurious numerical oscillations requires the intro-

duction of corrective terms in the original PPE [23, 18]. For example, the recent145

MPS method of [23] uses two error-compensating terms in the PPE to improve

numerical stability, enabling the model to reproduce design waves of practical

interest with a 1% root-mean-square (RMS) error with respect to experimental

data. A drawback of [23]'s model is the signi�cant computational time needed

by the semi-implicit scheme, and the presence of empirical pressure parame-150

ters that require tuning. Here we consider an alternative weakly compressible
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approach, which is much faster to implement. Allowing for slight compress-

ibility of the 
uid, the governing equations (1)-(2) remain valid, in which � is

the reference ambient density, about which the actual density 
uctuates slightly

[27, 28]. Hence, (1)-(2) are complemented by the following equation of state155

used to calculate explicitly the pressure �eld:

pk+1
i =

�c 2




��
n�

i

n0

� 


� 1
�

; (8)

wheren0 is the particle number density of an internal particle at t = 0, n�
i is the

particle number density of the i -th particle at the intermediate time step, 
 = 7

is the 
uid polytropic index, and c is an arti�cial speed of sound [17, 25, 29, 30,

31]. The equation of state (8) was originally introduced in the context of SPH160

[30, 32] and applied for the �rst time to MPS by Shakibaeinia & Jin [29], who

de�ned their method as Weakly-Compressible Moving Particle Semi-Implicit

(WC-MPS). Our method extends Shakibaeinia & Jin's formulation by adding

further schemes for numerical stabilisation (see Section 2.3) and free-surface

stabilisation (Section 2.4). Here we denote our improved method as MPE to165

highlight the explicit nature of the numerical scheme for pressure.

In order to achieve numerical stability, the arti�cial speed of sound must be

at least 5 times the characteristic speedvc in the simulation. We therefore set

vc = max
np

gh;Fr
p

gh
o

;

with

c=vc � 5 (9)

ensuring that the maximum density error is of the order of 1% [17]. Others

have recommended an even more stringent criterion for numerical convergence,

whereby c=vc > 10, e.g. see [32]. We remark that (8) is a sti� equation and170

is known to introduce unphysical density 
uctuations in SPH. In our MPE

calculations, we did not observe such 
uctuations, so long as condition (9) was

satis�ed. This is most likely because the MPE method is not based on density

per se but on particle number density, which remains more stable throughout the

numerical calculations [17]. Furthermore, use of an arti�cial viscosity term in the175
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MPE model (see Section 2.3) e�ectively reduces numerical pressure 
uctuations

[23].

Once the pressure has been computed, the velocity �eld is calculated from

(7), where the pressure gradient is discretised by means of the following Taylor-

expansion based scheme,180

hr pi k+1
i = D � 1

i �
1
n0

X

j 6= i

pk+1
j � p̂k+1

i
�
r �

ji

� 2 r �
ji w

�
r �

ji ; r e
�

; (10)

wherer �
ji = ( r j � r i )

� is the displacement vector between particlesi and j at in-

termediate time. The vector r �
ji is readily determined through time integration,

such that

r �
ji = r ji +

�
v �

j � v �
i

�
� t:

In (10), the 2 � 2 matrix D i is given by

D i =
1
n0

X

j 6= i

r �
ji

r �
ji




�
r �

ji

� T

r �
ji

w
�
r �

ji ; r e
�

; (11)

[see 17, 23]. If the neighbourhood of thei -th target particle is sparsely popu-

lated, det(D i ) ' 0, which would make (10) indeterminate. In such cases, the

stabilising matrix D i is substituted by the identity matrix.

Choice of the minimum pressure ^pk+1
i in the neighbourhood of particle i185

makes the numerator in (10) always non-negative; this prevents particle clus-

tering and improves model stability [23]. Note that this only holds for 
uid


ows of homogeneous density and compressive stress-states, such as those stud-

ied here. For 
uid 
ows involving negative pressure and tensile stress state(s),

other gradient correction schemes are needed, such as suggested by [33, 34].190

With v k+1
i known, the position of each particle is then updated by simple

time integration, as

r k+1
i = r k

i + v k+1
i � t:

The time step � t must satisfy the Courant conditions

Cf low = vmax � t=l0 < 0:25 and Csound = vmax � t=c < 1;

and a minimum requirement that � t < 1 � 10� 3 s [17, 18].
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Figure 2: Geometry of the wave 
ume for a typical numerical experiment. Insert shows detail

in the vicinity of the MSD. Legend shows particle types.

2.3. Arti�cial viscosity

Renzi & Dias [23] recently introduced a novel arti�cial viscosity term to

regularise the numerical calculations, and thus prevent particle explosions and

tensile instability. Applying a Moving-Particle Semi-Implicit (MPS) formalism195

to the earlier SPH formulation of [30], [23] obtained the arti�cial viscosity term

as
�

Dv
Dt

� k

i
=

�c
n0

X

j 6= i

 
v k

ji � r k
ji

�
r k

ji

� 2
+ 0 :01r 2

e

!  
r e

r k
ji

! 2
r k

ji

r k
ji

; (12)

where v k
ji = v k

j � v k
i , r k

ji =
�
�r k

ji

�
� , and � is a non-dimensional tuning parameter

that requires calibration. The arti�cial viscosity term (12) is evaluated at the

prediction step (5). The parameter � depends on the initial particle distance200

l0 and on the 
ow regime. Noting that the arti�cial viscosity is di�erent from

physical viscosity, calibration of � is achieved by minimising the centred root-

mean-square error of the time series of the free-surface elevation, with respect to

available benchmark data. For free-surface wave applications,� is of the order

O(10� 4 � 10� 3), and variations within this range do not change the dynamics205

signi�cantly [23].

2.4. Boundary and initial conditions

Figure 2 shows a typical layout of the numerical domain including the MSD

and boundaries. Boundary conditions are applied at the free surface of the liquid

and at solid boundaries. At each time step, free-surface particles are identi�ed210
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by applying the following criteria concurrently:

nk
i < 0:97n0 ;

X

j 6= i

r ji w
�
r k

ji ; r e
�

< 0:88
X

j 6= i

r 0
ji w

�
r 0

ji ; r e
�

; (13)

as proposed by [23]. Note that a similar criterion, based on a nearly symmetric

arrangement of particles (ASA), was implemented in the context of SPH by

[35]. Particles that satisfy (13) are assigned a null value of pressure. The free

surface elevation� is then interpolated numerically using �rst-order Lagrange215

polynomials [36].

Solid boundaries (the bed and the two lateral walls of the 
ume) are mod-

elled using the wall particle method, i.e. they are represented by wall particles

that move at the speed of the objects they simulate. Thus, for any particle

p belonging to either of the two lateral walls, we apply the non-slip condition

v k
p = 0, at any arbitrary time step k. The bed boundary is represented analyt-

ically by the curve y = f (x; t ), where f (x; t ) is the bed perturbation, starting

from rest at t = 0 and then moving with speed u(t) for t > 0. Hence any particle

q belonging to the MSD must satisfy the initial conditions:

(y)0
q = f ((x)0

q ; 0); v 0
q = 0 :

As time elapses, the position of each MSD particle is then updated as

(x; y)k+1
q = ( x; y)k

q + u(tk+1 )� t:

To prevent 
uid particles from penetrating solid boundaries, the thickness of

wall layers is set at least twice the initial particle distance, and wall particles

are assigned pressure in accordance with the equation of state (8). Furthermore,

at least two layers of dummy particles are placed behind the wall particles to220

avoid particle de�ciency near the boundaries (see again �gure 2).

3. Validation and veri�cation

In this section, we validate and verify the foregoing MPE numerical model

against published experimental data and approximate analytical solutions.
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3.1. Free-surface elevation for semi-elliptical and Gaussian MSD225

First, we consider the seminal experiments of Leeet al. [9], performed

in an open-topped wave 
ume 7:5 m long, containing shallow water of mean

depth h = 0 :04 m. The waves were generated by a two-dimensional sliding

topography of 0:049 m chord and 0:0065 m height at mid-chord. The exact

shape of the MSD is not given by [9], and so we assumed a semi-elliptical shape,230

which is commonly used in experimental investigations on landslide generated

tsunamis [3, 19, 20, 21, 37]. We remark that for a smooth sliding body, the

exact geometrical shape has only a minor e�ect on the generated waves [21, 22].

Moreover, this e�ect becomes negligible in the far �eld [38].

The MPE model was run with 94,190 particles, time step � t = 2 � 10� 4 s235

and arti�cial viscosity parameter � = 1 � 10� 3. Particle number convergence

tests were carried out using the statistical method detailed by [23]. Figure 3

shows the evolution of the non-dimensional free-surface elevation,� = �=h , with

non-dimensional time, T = t
p

g=h, for three Froude numbers, Fr = 0:82, 0.89,

and 1.01. There is very satisfactory agreement between the numerical and ex-240

perimental results, except for minor discrepancies in the tails of the wave trains.

Table 1 lists the relative error between predicted and measured free surface ele-

vation with respect to still water depth at the largest crest and trough, obtained

for each Froude number case considered in �gure 3. Note that the relative er-

ror invariably remains lower than 10%, corresponding to an absolute error of245

order O(10� 3) m. This is the same order of magnitude of the initial particle

distance l0 = 0 :002 m used in the simulations, and is consistent with the use of

a �rst-order Taylor expansion for the gradient scheme (see Section 2.2), where

the error is O(l0). It should be noted that the time series of the slide accelera-

tion is not presented in the paper by [9]. Therefore, in the numerical model we250

implemented an instantaneous acceleration from initial zero speed, which may

further explain the minor di�erences between the numerical and experimental

results. The unevenness of the 
ume 
oor (� 0:001 m) and the presence of a

small gap (5� 10� 4 m) underneath the sliding mass in the experiments are ad-

ditional factors that could have contributed to the small discrepancies between255
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Figure 3: Comparison between non-dimensional free surface time histories obtained using the

present numerical model and experimental data from [9]. ( a) Fr = 0 :82, x=h = 49 :3; (b)

Fr = 0 :89, x=h = 70; and ( c) Fr = 1 :01, x=h = 70. Note that x is measured downstream of

the initial central location of the slide.

Fr Crest Trough

0.82 0.06 0.02

0.09 0.03 0.04

1.01 0.08 0.02

Table 1: Relative error between model predictions and experimental measurements of free

surface elevation with respect to water depth h at the largest crest and trough for each case

considered in �gure 3.

the numerical predictions and published experimental data.

Next, we consider veri�cation against the analytical solution obtained by

Michele et al. [13]. Figure 4 shows snapshots of non-dimensional free-surface

elevation � pro�les against non-dimensional horizontal coordinate X = ( x �

�xc)=h, obtained using the present MPE numerical model and Micheleet al.'s

analytical solution, �xc being the initial position of the MSD centroid. In this

case, the seabed perturbation is a translating Gaussian given by

f (x; t ) = Ae� � [x � �x c � utH ( t )] 2
;

where u is the horizontal speed of the seabed perturbation,� is a shape factor,

A is the maximum thickness of the perturbation, and H (t) is the Heaviside step

function. The parameters are: � = 7 :3 m� 2, A = 0 :045 m, h = 0 :2 m. The

deformation speed isu = 1 m =s, corresponding to Fr = 0:71. The MPE model260

is run with 54,680 particles in a 6 m long numerical 
ume, the time step is
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Figure 4: Comparison between the non-dimensional free surface elevation pro�les predicted

by the present numerical MPE model and the approximate analytical solution proposed by

[13] at three non-dimensional time instants.

T Crest Trough

1.05 0.002 0.001

4.20 0.006 0.002

6.3 0.006 0.006

Table 2: Relative error between model predictions and analytical solutions of free surface

elevation with respect to water depth h at the largest crest and trough for each case considered

in �gure 4.

� t = 5 � 10� 4 s and the arti�cial viscosity parameter is � = 2 :5 � 10� 3.

The numerical results in �gure 4 provide a close match to the analytical

solution, in particular the times of arrival of crests and troughs, and the shape

of the wave at di�erent instants. The maximum wave height predicted by the265

numerical model is slightly higher than that obtained analytically. It should

however be noted that the analytical model resolves the wave �eld up to second

order of nonlinearity and so neglects higher-order contributions which can be

important near local extrema [13]. Table 2 presents the relative error in pre-

dicted and analytical free surface elevation with respect to still water depth at270

the largest crest and trough, obtained for the cases shown in �gure 4. The rela-

tive error is below 1%, with absolute error of the same orderO(10� 3) m as that

of the initial particle distance l0 = 0 :005 m used in the simulations. Appendix A

provides details of the convergence of the numerical scheme with initial particle

distance. Next, we validate the MPE model using an approximate analytical275
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