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Abstract:  

Pristine SiO2, TiO2 and composite SiO2-TiO2 films of 200 nm thick were coated on surface of 

quartz acoustic wave (SAW) sensors with sol-gel and spin coating technique.  Their performance 

and mechanisms for sensing NH3 were systematically investigated. Sensors made with the TiO2 

and SiO2-TiO2 films showed positive frequency shifts, whereas SiO2 film exhibits a negative 

frequency shift to NH3 gas. it is believed that the negative frequency shift was mainly caused by 

the increase of NH3 mass loading on the sensitive film while the positive frequency shift was 

associated to the condensation of the hydroxyl groups (-OH) on the film making the film stiffer 

and lighter, when exposed to NH3 gas. It demonstrated that humidity played a significant factor 

on the sensing performance. Comparative studies exhibited that the sensor based on the 

composite SiO2-TiO2 film had a much better sensitivity to NH3 at a low concentration level (1 

ppm) with a response of 2 KHz, and also showed fast response and recovery, excellent 

selectivity, stability and reproducibility.  

Key words: SAW sensor; hydroxyl groups; mass loading; elastic modulus 

1. Introduction  

 Ammonia is an important industrial forming gas used in various fields including 

pharmaceuticals and chemical industries as well as national security [1-8]. However, it is 

flammable and poisonous that can cause seizures, collapse, lung damage, blindness, coma, and 

even death [9-12]. Therefore, determining the leakage of ammonia in ambient environment 



 

 

 

becomes critical. To achieve this goal, various types of ammonia sensors, such as metal oxide 

semiconductor sensors, electrochemical sensors and surface acoustic wave (SAW) sensors were 

developed, [13-17].  Benefiting from the significant development of RF and crystal technologies, 

surface acoustic wave techniques (SAWTs) are playing important roles in our daily life [18-21]. 

Among the various SAWTs, such as microfluidic and RFID techniques, the SAW sensor 

technique has been attracting more attention due to the serious air pollution in recent years [22-

25]. SAW sensors have advantages of high sensitivity, high speed, good reliability, high 

accuracy, and low cost, which are suitable for practical applications. A SAW sensor is essentially 

an RF oscillator. The core part of such a sensor is a SAW resonator coated with a sensitive film 

layer to act as frequency-changing component through the adsorption/chemical binding of 

ammonia molecules. The central frequency of the resonator can alter the conductivity (electric 

loading), effective mass (mass loading) or elastic modulus/density/viscosity (elastic loading) of 

the film [26-29]. Hence, for a good SAW based NH3 sensor, the sensitive film should be 

sensitive to one or all these variations when exposed to NH3 gas. For example, Raj et al. reported 

a quartz SAW sensor with a ZnO film layer, which showed a negative frequency shift attributed 

to the variations of mass and elastic modulus of the ZnO film when exposed to NH3 [30]. Chen 

et al. showed a quartz SAW NH3 sensor with a Pt doped polypyrrole sensitive film, and they 

attributed the positive frequency shift to the variation of conductivity of film [31].  Similar work 

about either positive or negative frequency shift of the SAW NH3 sensor has been reported in 

many references [32-34].  

 

The pristine SiO2 and TiO2 as well as the composite SiO2-TiO2 films have been extensively 

studied because of their extraordinary optical, catalytic, electrical and mechanical properties [35-



 

 

 

38]. However, their gas sensing performance for NH3 has not been widely exploited. Although 

various methodologies including magnetron sputtering, chemical vapor deposition and thermal 

oxidation techniques have been used to fabricate the films [39-41], sol-gel methodology is the 

most cost-effective technique.  

 

It is believed that a large amount of hydroxyl groups (-OH) existed on the SiO2 and TiO2 and 

composite SiO2-TiO2 films prepared with sol-gel technology [42,43], even after their calcination 

[44,45]. Since these hydroxyl groups are hydrophilic, H2O in the ambient environment can be 

easily absorbed on the surface of the films to act as the positive sites for absorbing NH3.  The 

extremely high solubility of NH3 in H2O results in the films to be much heavier. In addition, it 

has been reported that the hydroxyl groups can also be catalyzed into condensation by NH3 [46-

48]. Consequently, when these films (both pristine and calcined) are exposed to NH3, they may 

also become stiffer and lighter because of the condensation of the hydroxyl groups, therefore, 

they could be explored as good sensing films for SAW NH3 sensors.  

In this work, we deposited the SiO2, TiO2 and SiO2-TiO2 films on the surfaces of the as-

fabricated quartz surface acoustic wave (SAW) sensors. The sensing mechanisms for ammonia 

(NH3) were systematically studied.  The as-deposited fi lms were rich of the hydroxyl groups, 

which is an advantageous characteristic for the NH3 sensing. The experimental results 

demonstrate that the sensor coated by SiO2-TiO2 film is much more sensitive than those made 

with a layer of its individual components. Also the humidity was found to have significant 

influence on the sensing behavior and the reasons have been identified.  

2. Material and methods 



 

 

 

2.1 Materials  

Tetraethoxysilanc (TEOS), Tetrabutyl titanate (TBT), ethanol, and ammonia (analytic pure 

liquid, 25 wt%) were all analytically pure and purchased from Chengdu Kelong Chemical 

Reagent Factory, China. Standard NH3  (2 vol% ), H2S (2 vol% ), H2 (2 vol% ), CO (2 vol% ), 

CH4 , (2 vol% ) and C2H5OH (2 vol�� ) gases in dry air were purchased from the National 

Institute of Measurement and Testing Technology, China. SAW resonator fabricated on ST-cut 

quartz consists of the input and output interdigital transducers (IDTs, 30 pairs each) and 100 

pairs of reflection gratings. The IDTs and reflection gratings with �D���S�H�U�L�R�G�L�F�L�W�\���R�I�����������P���Z�H�U�H 

fabricated by conventional lithography technique on 200 nm thick Al thin film that was 

deposited by magnetron sputtering. The aperture of the IDTs was 3 mm and the central 

frequency of the resonator was designed as 200 MHz. 

2.2 Preparation of sols 

SiO2, TiO2 and SiO2-TiO2 sols were prepared by sol-gel technique. SiO2 sol was prepared by a 

modified Stober method [49]. In a typical procedure, the ethanol (analytic pure), TEOS (high 

pure), deionized water, and ammonia (analytic pure liquid, 25 wt%) were successively added 

into a Bunsen flask with a molar ratio of 1: 3.25:37: 0.17 under a continual magnetic stirring. 

The obtained solution was stirred at 30 °C for 2 hrs and aged for 7 days to obtain the colloidal 

silica sol with a concentration of 0.5 mol/L. TiO2 sol was prepared using the following 

procedures. TBT of 2 g was firstly added into a beaker containing 20 ml ethanol under the 

magnetic stirring for 30 minutes, and then 0.25 ml ammonia (25-28 wt%) was added into the 

beaker dropwise under a vigorous stirring. The obtained solution was then aged for 1 day to get 



 

 

 

the colloidal TiO2 sol. The mixture of SiO2-TiO2 sol was prepared with the volume ratio of 1: 1 

under the magnetic stirring for 30 minutes.  

2.3 Preparation of films 

The SiO2, TiO2 and mixed SiO2-TiO2 sols were coated onto the SAW resonators (and K9 glasses, 

which used for electrical and film thickness characterization) using a multi-spin-coating process 

(3-cycles), with a speed of 3000 r/min for 30 s in each cycle. The coated quartz substrates were 

immediately annealed at 300 °C for about 10 min and then at 450 °C for 2 hrs in ambient 

atmosphere. Finally, the coated resonators were connected to the equivalent circuit to build SAW 

sensors (together with the oscillating circuits), as shown in Fig. 1. 

2.4 Characterizations  

Rigaku D/max-2400 X-ray diffractometer was used to characterize the crystallinity of the 

prepared films. The morphology of the as-prepared films was characterized by field-emission 

scanning electron microscopy (SEM, FEI Inspect F). An FTIR Spectrometer (Nicolet 6700) was 

used to collect the infrared absorption spectra of the prepared films. A source meter (Keithley 

2400) was used to measure the sheet conductivity of the films coated on K9 glass. An 

ellipsometer (TP77) was used to determine the thickness of prepared films on K9 glass.  

 

To conduct the gas sensing measurement, the ambient temperature was kept at 25 °C and the 

relative humidity (RH) was controlled by a humidifier and a mass flow controller which controls 

the flow rate of dry air. During the measurement, the environment RH was adjusted to the 

desired values. The sensors were connected to a frequency counter (Agilent 53132A) to monitor 



 

 

 

the dynamic oscillating frequency of sensor. The sensor was mounted in a chamber with a 

volume of 2 L. A syringe was used to inject the standard ammonia gases into the testing chamber 

and the response of the sensor was recorded (Fig. 2). The concentration (with fixed values of 1, 

2, 5, 10, 20 and 40 ppm for each test) of the NH3 gases was controlled by adjusting the injecting 

volumes from the syringe (0.1, 0.2, 0.5, 1, 2, and 4 ml). When the response of sensor was stable, 

the chamber was opened, and thus the sensor was exposed to the ambient atmosphere to test its 

recovery performance. The response of sensor was defined as �û�I��� ��fs-f0, where fs and f0 are the 

oscillating frequencies in testing gas and atmosphere, respectively. Thus, �û�I is positive if the 

oscillating frequency increases when the sensor was exposed to testing gas and vice versa. The 

time taken for the sensor to achieve 90% of the total frequency shift was defined as the response 

time in the case of gas adsorption or the recovery time in the case of gas desorption.  

 

3. Results and discussion 

3.1 Characterization of prepared films  

SEM surface morphology images of SiO2, TiO2 and SiO2-TiO2 films are shown in Fig. 3. The 

SiO2 film was composed of SiO2 nanoparticles with an average diameter of ~40 nm. Lots of 

pores can be found on the film. The TiO2 film show a dense structure without apparent pores 

observed, and the particles size of TiO2 is small (~15 nm). The SiO2-TiO2 film has a porous 

structure, and the pores and cracks are large and the particles size is larger than that of SiO2 film, 

with an average diameter of ~60 nm. The pores and cracks may act as the paths for gas 

molecules to diffuse into the films, hence, more porous surfaces can act as the absorption sites 

for gas molecules, which is beneficial for sensing.  



 

 

 

 

��XRD patterns of the SiO2, TiO2 and SiO2-TiO2 films are shown in Fig. 4. XRD pattern of the 

SiO2 film shows a broad peak at about 23°, which is the typical character of amorphous SiO2. 

Rutile TiO2 was also evidenced in the XRD spectra. XRD pattern of SiO2-TiO2 film is similar to 

that of TiO2 film, however, the intensity of all peaks is weaker. Besides, there is also a broad 

peak at about 23°. Hence, it clearly demonstrates that amorphous SiO2 and Rutile TiO2 co-

existed in the as-prepared SiO2-TiO2 film. 

 

 

The typical FTIR spectra of SiO2, TiO2 and SiO2-TiO2 films are presented in Fig. 5. In the high 

wave number spectral range, broad bands between 3600 and 2800 cm-1 can be observed in all the 

three spectra, which can be assigned to fundamental stretching vibration modes of different OH 

hydroxyl groups (free or bounded) [42]. The band at 1630 cm-1 is associated to molecular water, 

and the band at ~960 cm-1 is attributed to stretching mode of non-bridging oxygen atoms, e.g., 

Si-OH and Ti-OH. In the spectra of SiO2 (Fig. 5a), various bands at 427, 790, and 1070 cm-1 are 

associated with SiO2, corresponding to its transverse optical (TO) modes. The shoulder at 1210 

cm-1 is associated with the longitudinal optical LO3 mode of SiO2 while the shoulder at 3650 cm-

1 is derived from SiO-H stretching [45]. In the spectra of TiO2 (Fig. 5b), there is a broad and 

intense band in the range of 400-800 cm-1, which can be assigned to Ti-O and Ti-O-Ti groups. 

The band at 3737 cm-1 can be ascribed to surface Ti-OH groups, and the band ranging from 1300 

to 1500 cm-1 can be assigned to the residual carbon [50]. From Fig. 5c, the appearance of both 

SiO2 and TiO2 spectra demonstrates the co-existence of SiO2 and TiO2 in the tested sample. 



 

 

 

From FTIR results, it clearly shows that there are hydroxyl groups on all the three films, and the 

hydroxyl groups can absorb H2O in ambient environment. These absorbed water molecules can 

attract NH3, making the film heavier when exposed to NH3. The absorbed NH3 can also facilitate 

the condensation of hydroxyl groups, making the films stiffer and lighter. Hence these films 

could be explored as the good sensing films for SAW NH3 sensors. 

Table 1 listed the average film thickness and sheet conductivity of films. All the films have an 

average thickness of ~200 nm and the sheet conductivity is lower than 10-9 S/square.  

.Gas sensing properties and sensing mechanisms  

Fig. 6a shows the responses of the sensors based on SiO2, TiO2 and SiO2-TiO2 films (designated 

as Sensor 1, Sensor 2 and Sensor 3, respectively) when exposed to 10 ppm NH3. Sensor 2 and 

Sensor 3 exhibit positive frequency shifts (�ûf), whereas Sensor 1 exhibits a negative frequency 

shift. Moreover, Sensor 3 shows the strongest response. The frequency shifts of the SAW sensors 

are contributed by three factors: the sheet conductivity (electric loading), the mass loading on the 

film (mass loading) and Young�¶s modulus (elastic loading).  

 

The relationship between the frequency shift (�û�I) and the electric loading is given below [27],  
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Where, f0 = 200 MHz, V0 = 3158 m/s (for substrate of ST-cut quartz), K2 = 0.0011, Cs = 0.5 

pF/cm are the unperturbed oscillation frequency of the sensor, the unperturbed SAW velocity on 



 

 

 

the SAW resonator, electromechanical coupling coefficient, the capacitance per unit length of the 

SAW resonator fabricated on a ST-cut quartz substrate, respectively. �1s is the sheet conductivity 

of the sensing film, which is lower than 10-9 S square for all the films used in our experiment 

(Table 1). In our experiment, �1s values of all the sensing films increase by exposure to NH3, and 

the rate of increase is less than 4 times as shown in Fig. 6b (the response was defined as R = Rair-

Rgas/Rgas, where Rair is the film resistance in ambient air, Rgas is the film resistance in a mixture of 

NH3 and air). The calculated values of V0Cs���1s in Equation (1) are listed in Table 1, either with or 

without NH3 in the environment. According to Equation (1), the calculated values of �û�I (�û�Ie) 

contributed from the electric loading are 2.2�u10-5, 3.4�u10-2 and 2.5�u10-3 Hz for Sensor 1, Sensor 

2 and Sensor 3 respectively when exposure to NH3 of 10 ppm.  These are far smaller than the 

experimental value of �û�I.  Thus, it can be concluded that the contribution of electric loading is 

not significant. The �û�I is mainly caused by the mass and elastic loadings. 

 

The mass loading on the film changes the frequency of sensors follows Equation (2) [30], 

2
1 2 0( ) sf k k f �U�' � �� �u �u �'                                                                                                            (2) 

where k1= �x8.7�h 10-8 m2skg-1 and k2= �x3.9�h 10�x8 m2skg-1 which are substrate material constants 

of S�±T cut quartz. �û�!s is the change of areal density of the sensing film on the SAW device when 

exposed to NH3. Note that k1 and k2 are both negative in signs, therefore a positive change �û�!s 

will lead to a negative value of �û�I.  

 



 

 

 

The relationship between the frequency shift and the elastic loading is given by [30],  

f p E�' � �'                                                                                                                                   (3) 

Where p is a positive constant, �û�( is the change of the elastic modulus of sensing film when 

exposed to NH3. Note that when �û�( is positive (i.e., the stiffness of film increases), the sensor 

would show a positive shift.  

 

The FTIR results verified that the hydrophilic hydroxyls formed on SiO2, TiO2 and SiO2-TiO2 

films. Hence, the H2O molecules in the ambient environment are easily absorbed on the films 

(Fig. 7a). Fig. 7 schematically illustrates two potential variations occurred on the film surface by 

interacting with NH3. (1) The absorbed H2O can act as the positive sites for absorbing NH3 due 

to the high solubility of NH3 in H2O, making the films much heavier (Fig. 7b). Hence, the 

frequency of sensor has a negative shift [Equation (2)]. (2) The hydroxyls on the films are 

catalyzed by absorbed NH3 to become condensation (Fig. 7c). As a result, the films will become 

stiffer and lighter. Consequently, the �û�I contributed by the Variation (2) should be positive 

according to Equations (2) and (3). 

For Sensor 1, Variation (1) is responsible for the negative �ûf shift whereas the Variation (2) is the 

main mechanism for Sensor 2 and Sensor 3 due to their positive �ûf.  To further understand why 

the response of Sensor 3 is much stronger than Sensor 2 and also the influence of humidity on 

the as-prepared sensors, the relative humidity (RH) was varied from 5% to 70% to reveal the 

underlying principle in our experiments. The results of these experiments are summarized in 

Table 2. All the sensors showed a negative frequency shift when RH was increased. This is 



 

 

 

because more water has been absorbed on the films due to the hydrophilic hydroxyls on the 

surface of films, hence the mass loading on the films increases when the RH is increased. In 

addition, Sensor 1 and Sensor 3 are much more sensitive to RH. Consequently, it can be 

concluded that much more water will be absorbed on SiO2 and SiO2-TiO2 films. The absorbed 

water acts as the positive site for absorbing NH3 onto the films, thus increasing the concentration 

of NH3 on the film. As a result, the concentration of NH3 is much higher on SiO2-TiO2 film than 

that on TiO2 film, making Sensor 3 much more sensitive than Sensor 2. To confirm this 

conclusion, responses of sensors to NH3 under different RHs were also measured and the results 

are shown in Fig. 8a-c. Clearly the responses of all sensors increase with the RH value, thus 

supporting the aforementioned results.  

 

 

Both Variations (1) and (2) may be responsible to the sensing performance. To compare the 

differences of the influence of Variations (1) and (2) on the responses of the sensors, we 

analyzed the recovery curves of Sensor 1 and Sensor 2, as shown in Fig. 8d. Opposite to the 

response process, the recovery processes of Variations (1) and (2) caused positive and negative 

frequency shifts, respectively. For Sensor 2, the frequency kept decreasing for ~30 s during 

whole recovery process, indicating that the recovery [in Variation (2)] occurred for at least 30 s. 

Since if it is less than 30 s, the frequency would be either stabilized or increased because of the 

recovery in Variation (1). Based on above result, it is clear that the recovery duration of a sensor 

lasted for at least 30 s if the Variation (2) contributes to the response of the sensor. However, the 

recovery of Sensor 1 lasted for only ~15 s (Fig. 8d). Hence, we can conclude that the Variation 



 

 

 

(1) has dominant influence to the response to NH3 for Sensor 1 and Variation (2) has little 

contribution, whereas the Variation (2) contributes much more to the performance of Sensor 2 

and Sensor 3. During the sensing tests of Sensor 2 and Sensor 3, since the water contents on the 

TiO2 and SiO2-TiO2 films are about 9.27 and 1.62 times less than that on the SiO2 film (Table 2), 

respectively, the Variation (1) caused by NH3 on these films is not higher than that on SiO2 film. 

Therefore, the response from Variation (1) is not larger than -400 Hz (Fig. 8a, the response of 

Sensor1 at RH=40%), which is 5 and 20 times lower than the practical responses of Sensor 2 and 

Sensor 3. Therefore, we concluded that the responses of Sensor 2 and Sensor 3 to NH3 should be 

mainly due to the Variation (2).  

 

Since the Sensor 3 has the best performance in the NH3 sensing, the following tests were all done 

using the Sensor 3 in an RH of 40 % at 25 °C.  Fig. 9a shows the dynamic response of the Sensor 

3, and the sensor was able to detect NH3 gas concentration as low as 1 ppm with a response of 2 

KHz. In addition, the frequency response increased when the gas concentration was increased 

from 1 ppm to 40 ppm. Fig. 9c shows the response and recovery times as a function of NH3 gas 

concentration. The response time changed insignificantly whereas the recovery time was 

increased from 60 s to 140 s when the NH3 gas concentration was increased from 1 ppm to 40 

ppm.  

 

As discussed, the response of Sensor 3 is mainly derived from the Variation (1) contributed by 

the condensation of hydroxyls on SiO2-TiO2 film, which is facilitated by the adsorption of NH3.  

Hence, we believe that the Sensor 3 has a good selectivity to NH3, since the other mostly 



 

 

 

common gases may show no catalytic action for the condensation of hydroxyls. To confirm this, 

the Sensor 3 was also exposed to 10 ppm H2, CO, CH4, H2S and C2H5OH gases using the same 

methodology as described before, and the results are shown in Fig. 9d. The Sensor 3 showed no 

significant responses to 10 ppm H2, CO, CH4, H2S, and shows only ~200 Hz frequency shift to 

10 ppm C2H5OH, which is 50 times weaker than its response to NH3, indicating the good 

selectivity of Sensor 3.  

 

The reproducibility and long term stability of Sensor 3 were also investigated. Sensor 3 was 

exposed to NH3 of 10 ppm for response and recovery for 4 cycles (Fig. 9e), the fluctuation of 

frequency shift is less than 5% for the 4 consecutive cycles, indicating good reproducibility. 5 

individual tests were conducted in 50 days for investigation of the long term stability of Sensor 

3. In each test, the Sensor 3 was consecutively exposed to NH3 of 1, 10 and 40 ppm for response 

and recovery, the total time for a single test was about 15 minutes. The test was conducted every 

10 days. The result of the five tests is shown in Fig. 9f. Clearly the sensor shows stable responses 

to NH3 gas of various concentrations for 50 days. 

 

 

4. Conclusion 

In summary, the quartz SAW sensors with SiO2, TiO2 and SiO2-TiO2 films were fabricated and 

used for the applications of sensing NH3. All the sensors showed good responses to NH3. The 

sensors based on TiO2 and SiO2-TiO2 films showed positive responses which are mainly due to 



 

 

 

the condensation of hydroxyls catalyzed by NH3, making the film stiffer and lighter. in contrast, 

the sensor based on SiO2 film showed a negative response, which is mainly due to the increase of 

the mass loading caused by absorbed NH3. In addition, the humidity was found to be 

significantly influential to the response of sensors because the water absorbed on the film surface 

acted as the active site to absorb NH3, making the sensors more sensitive to NH3. The sensor 

based on SiO2-TiO2 film showed the best performance to NH3, and could detect 1 ppm NH3 with 

a response of 2 KHz. Moreover, this sensor also showed excellent selectivity, stability, and 

reproducibility at room temperature.  
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Figure captions  

Figure 1. The schematic diagram (a) and a photo (b) of a SAW sensor. 

Figure 2. The setup of the experimental system. 

Figure 3. The SEM surface morphology images of SiO2 (a), TiO2 (b) and SiO2-TiO2 (c) films. 

Figure 4. The XRD patterns of pristine SiO2, TiO2 and SiO2-TiO2 composite films 

Figure 5. FTIR spectra of SiO2 (a), TiO2 (b) and SiO2-TiO2 (c) films. Broad bands between 3600 

and 2800 cm-1 in all the three spectra can be assigned to fundamental stretching vibration modes 

of different OH hydroxyl groups (free or bounded).The band at ~960 cm-1 is attributed to 

stretching mode of non-bridging oxygen atoms, e.g., Si-OH and Ti-OH. In (a) and (c), the 

shoulder at 3650 cm-1 is derived from SiO-H stretching. In (b) and (c), the band at 3737 cm-1 can 

be ascribed to surface Ti-OH groups. 

Figure 6. (a) Frequency responses of SAW sensor based on SiO2, TiO2 and SiO2-TiO2 films to 10 

ppm NH3. (b) Electrical response of the SiO2, TiO2 and SiO2-TiO2 films to 10 ppm NH3.  

Figure 7. Sensing principle of a film with hydroxyl groups. (a) The sensing film in ambient air, 

H2O is absorbed on the film. (b) Variation 1: NH3 is absorbed in the H2O on the film. (c) 

Variation 2: the film is catalyzed to condensation by NH3.  

Figure 8. Response of SAW sensors based on based on SiO2 (a), TiO2 (b) and SiO2-TiO2 (c) 

films to 10 ppm NH3 under in the environment with different relative humidity. (d) Comparison 

of the frequency response and recovery process to10 ppm NH3 with RH = 40% between the 

SAW sensors based on SiO2, TiO2 films. 



 

 

 

Figure 9. (a) Dynamic Frequency responses to NH3 of various concentrations for the sensor 

based on SiO2-TiO2 films film. (b) Frequency response as a function of NH3 concentration. (c) 

Response and recovery times as a function of NH3 concentration. (d) The dynamic response and 

recovery of the sensor based on SiO2-TiO2 film to various gases. (e) The dynamic response and 

recovery of the sensor based on SiO2-TiO2 film to NH3 of 10 ppm for 4 cycles. (f) The frequency 

shift of the sensor based on SiO2-TiO2 film to NH3 of various concentrations in 50 days. 

  



 

 

 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

  



 

 

 

Table 1. Measured thickness and sheet conductivity of SiO2, TiO2 and SiO2-TiO2 films. 

Film  Thickness 
(nm) 

 �1sa 
(S/square) 

�1sg 

(S/square) 
V0Cs���1sa  V0Cs���1sg  �ûfe  (Hz) 

SiO2 film 212 3.2�u10-12 8�u10-12 49343 19737 4.2�u10-5 

TiO2 film 197 0.8�u10-10 2.9�u10-10 2012 544 6.7�u10-2 

SiO2-TiO2 
film 

193 0.7�u10-10 1.0�u10-10 2299 1532 5�u10-3 

Note: �1sa = Sheet conductivity of the film in ambient air; �1sg = Sheet conductivity of the film in 

10 ppm NH3; �ûfe = frequency shift contributed from electrical loading effect 

Table 2. Variation of frequency when RH varies. 

Relative Humidity 

Variation 

Frequency Shift (KHz) 

Sensor1 Sensor2 Sensor3 

From 5% to 40% -10.2 -1.1 -6.3 

From 40% to 70% -7.5 -0.71 -4.8 

 


