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ABSTRACT 
Personal informatics practices are increasingly common, 
with a range of consumer technologies available to support, 
largely individual, interactions with data (e.g., performance 
measurement and activity/health monitoring). In this paper, 
we explore the concept of social sensemaking. In contrast to 
high-level statistics, we posit that social networking and 
reciprocal sharing of fine-grained self-tracker data can 
provide valuable context for individuals in making sense of 
their data. We present the design of an online platform called 
Citizense Makers (CM), which facilitates group sharing, 
annotating and discussion of self-tracker data. In a field trial 
of CM, we explore design issues around willingness to share 
data reciprocally; the importance of familiarity between 
individuals; and understandings of common activities in 
contextualising one’s own data. 
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INTRODUCTION 
With the increase of available tools (e.g. Fitbit, Strava, 
MyFitnessPal) for recording one’s activities, self-tracking 
has become increasingly popular [8,20]. Motivations for 
self-tracking vary [13,28], and applications include a wide 
range of domains and activities that come with their own 
opportunities for design [2]. Despite the popularity of 
activity trackers, they suffer from temporary lapses in 
practices of recording data [18] and high abandonment rates 
due to range of factors [10,15,22]. Although self-tracking is 
for the most part an individual activity [24,25], in some cases 
it is a social and shared activity [13,19,28], and reflection on 
collected data is influenced and often shaped by social 

interactions [4]. For example, collaboration takes place in 
Quantified Self [38] meetings where self-trackers share 
practices and learn from others, but generally does not 
involve sensemaking [21] of individuals’ data. Most of the 
tracker applications available [40,41] limit collaboration to 
only sharing high-level statistics or achievements in order to 
get extra encouragement or peer support [17,26,29] for 
behavioural change [11,12,27]. And, a lack of context can 
make data difficult to interpret, as Slovak et al. [30] found in 
relation to the sharing of heart rate among couples, for 
example. Collaborations with personal informatics data has 
also been studied in chronic self-care applications 
[1,3,9,31,35,39]. While in some cases the analysis of data 
can be a joint effort in this domain [1,9], in contrast to our 
approach here the sharing (and importantly, making sense of) 
data is still unidirectional. Epstein et al. [14] used Value 
Sensitive Design to explore models of sharing fine-grained 
data. Building on this prior work, a key challenge that we 
take up in this paper is understanding appropriate ways of 
reciprocal sharing and presenting data in context, so that it 
can be meaningfully related to activities and everyday life for 
all parties involved [2].  

Our contributions are, first, the design and implementation 
of CM interactive visual tool for social sensemaking of 
personal tracker data. This entails sharing and comparing 
temporal traces of personal tracker data, and facilitating 
dialogue that is programmatically related to parts of the 
collective datasets, i.e., making subjective statements and 
asking questions of each other’s data based on these 
comparisons. Secondly, in a field trial of CM we explore 
sharing models in practice to understand how social context 
of data contributes to sensemaking, and to investigate what 
is the real value in exploring other’s data and how is this 
value distributed? How much context is needed to make 
sense of data? Is there value in reflecting on our own 
activities and daily lives in the context of other’s data? What 
mechanisms would be required for us to be able to make 
sense of another’s datasets and how might technology 
mediate this value exchange? 

DESIGN OF CITIZENSE MAKERS 
Our design-led approach consisted of preliminary focus 
groups to understand data sharing and sensemaking practices 
with conventional tracker interfaces, and the design and 
evaluation of CM. We recruited an opportunistic sample of 
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participants (n=20) from a parallel research study where 4 
offices were provided with Fitbits to monitor their heart rate 
in response to weekly changes in their office environment. 
Fitbits were used for data collection and participants were 
not given any other instructions for using them. Over the 
course of a 12-week study we ran weekly focus groups where 
we asked questions about practices of sharing and exploring 
data that emerged. We transcribed and thematically analysed 
these [6], with key themes emerging around engaging with 
data, lack of controls for sharing, additional measures for 
comparison, and meaningful social functionalities. We show 
how these themes informed the design of CM. 

Data Driven Narratives 
People were interested in seeing patterns in different datasets 
that the Fitbit was recording. They often got confused as they 
clicked between different datasets to do the comparison. For 
example, one participant tried to find correlations between 
sleep and heart rate: ‘I couldn’t find any [correlations], like 
if I sleep more does it make your heart slower, and if I sleep 
less does it make it higher? But I’m not very good at numbers 
so I can’t figure it out’ (Susan).  

Design: To make this task manageable, we chunked the data 
into sections based on the time of day (e.g. ‘morning’). Once 
a day is selected, the platform automatically constructs a 
‘data story’ from it. Our approach to data interaction is based 
on data driven stories or interactive storytelling [32–34]. We 
adopted a scroll-based interaction to navigate through data. 
This method requires less effort from the people and it is 
almost always preferred over clicking as a way to make 
content visible [5]. Adding additional context to the data 
creates new opportunities for interpretation, which can be 
further enhanced by interactive visual tools [7,23] and the 
storytelling approach. Unlike Fitbit, CM does not provide 
aggregated statistics. Instead, it lets people explore and look 
for interesting patterns in the fine-grained data. 

Levels of Sharing, Privacy and Control Over Data 
When we spoke to participants about control over data and 
privacy, they recounted that they were happy to share their 
data with their friends and co-workers, but were less 
comfortable sharing data beyond this circle. It was also 
evident that the sharing was affected by type of data. One 
participant stated: ‘We've looked into the privacy settings in 
Fitbit and I generally set everything - I'll share anything as 
long as we're friends. I don't want to share it beyond that. I 
think that's a bit strange sharing your heartbeat with the 
world’ (Tim). Also, people were conscious that their 
activities are recorded and made available for others to see. 
This fear of surveillance was uncomfortable and sometimes 
even made them change their behaviour: ‘I started feeling 
[…] like, “Big Brother is watching me” sort of thing. “I’d 
better not do that. It will record somewhere”’ (James). 
Participants thought that their privacy was intruded on when 
colleagues questioned them about the activities they did in 
their spare time: ‘I find it creepy when somebody tells me 
what I have been doing at the weekend […]. Personally I 

think it is right on the borderline of being a little bit too much 
information [shared]’ (Ryan). 

Design: We designed CM so that people could set individual 
rights for each person they wanted to share data with. From 
Epstein et al.’s [14] design considerations and our study 
findings, we arrived at two shareable transformations of fine-
grained data – Detailed Single-Day View and Limited Hours 
View. We modified the Single-Day approach to enable 
people to choose weekdays and/or weekends to share data. 
In addition, the Limited Hours allowed people to set limits to 
the range of hours they want to share. By default, data 
sharing was turned off. 

Meaningful comparison 
One of the participants drew our attention to the utility of 
social context for sensemaking: ‘If each other's heart rate 
was plotted on a graph with a section of a day where we were 
all kind of in this situation just inactive, sitting at a desk, then 
it will be interesting to see how who's doing what. And, you 
know, if something happened in the office that affected 
everyone, doesn't everyone kind of spike?’ (Tim). Sharing 
data and knowing that it is constantly recorded made people 
quite competitive. Participants were constantly checking 
Fitbit leader boards and even engaged in challenges. One of 
the participants felt that the numeric representation of steps 
does not give them a good comparison: ‘The frustrating thing 
for me is there's really only the steps metric that's a 
comparison, whereas if you like look at active minutes or 
cardio exercise or other elements of the data, then there will 
be more [better comparisons]’ (Jake).  

Design: We implemented functionality to allow people to 
visualise their own data alongside other peoples’ for a 
specific timeframe, in order to explore the role of social 
context in improving the sensemaking process (Figure 1). 
Being able to explore and compare fine-grained data in the 
context of others might lead to better understandings through 
visible connections between real life events and interactions 
with others.  

Social Sensemaking 
In addition to having competitions (using Fitbit’s interface) 
and comparing step counts with each other, participants also 
had conversations in person around these numbers. When 
asking participants if they talked about the data, they said that 
‘we've all swapped stories’ (Dan) and ‘we've sort of 
compared notes’ (Frank). These discussions about the data 
provided additional context to make sense of it and to 
compare it to their own data.  

Design: To facilitate this discussion and to link it to the data, 
we built an annotation system into CM. This allows people 
to mark a specific section of the data using brushing (i.e., 
selecting a subset of the data with an input device), and add 
textual annotations. These short comments or stories are then 
stored in a database linking to the specific data that was 
commented on. We distinguished two types of comments: 
private comments and public comments. Private comments  
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Figure 1. View from CM of multiple individuals’ morning 

heart rates on the same timeline with brushed section. 

are for personal reflection and only visible to the individual 
who enters them. Public comments are visible to all the 
people who are selected and whose data is displayed on the 
graph, when brushing occurs.  

DEPLOYMENT AND EVALUATION 
For the deployment of CM we recruited 18 participants (4 
female) using purposive sampling. Seven participants from 
the formative study took part. Additional participants were 
recruited by snowball sampling via university mailing lists. 
Over the course of 2-weeks, we asked people to wear their 
Fitbits and use CM in their own time to share and explore 
their data. We sent them a link to CM, accompanied by a 5-
minute video of how to use it. Participants received a £15 
voucher for taking part. We subsequently interviewed (15-20 
mins. semi-structured) 14 participants to understand their 
experiences with CM. In total, 4 hours of audio were 
recorded, transcribed and thematically analysed [6].  

Willingness to share 
Participants’ willingness to share depended on the type of 
data in question: ‘I was happy to share all my steps and stuff. 
Maybe if I had heart rate [data] I might not share that as 
much’ (Tom). They discussed clear sharing boundaries that 
distinguish self–use from sharing with others in the office, 
sharing with others in the study, and sharing with everyone, 
including other institutions. All the participants said that they 
chose to share data with people they knew personally or who 
they were ‘aware of already’. This was not so much a 
privacy issue: rather, it was mainly because they felt that 
strangers would not benefit from looking at their data. 
Although participants said that they would be more 
encouraged to share their data if it were anonymised, they 
did not see the usefulness of sharing it without context, i.e., 
who the person is or what their routines were. Referring back 
to the benefits of sharing, people were unsure whether 
sharing would be reciprocal: ‘I didn’t really want to share 
my data with other people who I didn’t know. Especially 
when I wasn’t sure that I wasn’t going to see their data in 
return’ (Fin). However, if somebody they did not know 
already shared data with them then they were more likely to 
share their data in return, pointing to the reciprocal nature of 
sharing. Hence, joint-sharing between people who did not 
know each other often depended on one pe taking the first 

step: ‘…another two names popped up and I was just like, 
“Oh, if people are happy to do it then I’ll…” and I clicked 
everyone. Just shared it with everyone after that’ (Leo).  

The utility of other people’s data 
Participants compared individual data to other people’s as a 
way of baselining for normative comparison of health and 
exercise. They also shared with groups to compare common 
activities and for competition. People were interested in 
comparing their data with others as a way of contextualising 
it: ‘It helps you get more grounded in different metrics, 
because you compare them to different people’ (Andrew), 
and ‘to be able to drill down further than you can with Fitbit’ 
(Jane). People noted that although it gives you a way to 
compare and see where you fit in the grand scheme of things, 
it is a more useful tool when they share common activities 
and experiences that can provide a basis for comparison: ‘If 
you’re not having the experience at the same time as 
somebody else, it’s a bit arbitrary […] shared experiences, 
how the same thing affected people differently is kind of 
interesting as well’ (Jane). 

Although the interface allowed people to explore their data 
and search for interesting new patterns, they often focused 
on specific, known activities. For example, one group of 
participants played 5-a-side football with each other and they 
were curious to see whether they could identify and compare 
data from that: ‘If you had some kind of a macro view for 
football, just call it “Football View”. It would be brilliant to 
see that as a breakdown and annotate things’ (Robert). For 
the people who were more interested in the competitive 
aspect of self-tracking, it gave new dimensions for 
comparing performance. It revealed the rich dynamics of the 
experience or performance that would otherwise be hidden 
in a daily step count. Importantly, the value in this relied on 
an understanding of the activity, either through having 
participated in it (as was the case for the football) or through 
concrete knowledge of its structure (e.g., an hour-long game 
with average heart rate and step count).  

Discussing data 
People working in the same office were already used to 
informally discussing their own data with others, but with 
CM, they could start discussing other people’s data as well. 
Overall, 60 comments were entered to the system over the 2-
week deployment. People often used discussion board for 
informal jokes, and this led to surprising realisations about 
what could be inferred from their data. One of the 
participants had a realisation after receiving a comment on 
his data: ‘I was saying, “You guys look super active,” and 
someone turned around and was like, “Yes, I think you were 
in bed then.” […] after that comment, I was like, “People 
are looking at my data!”’ (Robert).  

In another example, a participant received a comment that 
was he ‘kicking around a football’ at the time he was 
supposed to be working. This highlights the importance of 
people always having control over how their data is shared. 
The social element of discussions was appealing to people. 

Presentation in Online Communities CHI 2017, May 6–11, 2017, Denver, CO, USA

6938



 

However, as with visualising and comparing data, people 
found that discussions were more useful in contextualising 
their data when they had engaged in mutual activities. ‘For 
the group discussion, I mostly used it where I already knew 
that there was a group activity’ (Jeremy). This was one of 
the reasons why people did not want to initiate discussions 
with strangers on the platform. If they did not know the 
person and did not share common activities, they felt ‘kind 
of weird’ and ‘Big Brotherly’ adding comments to their data. 

DISCUSSION 
Our study illustrates the value of socially contextual data 
exploration, as well has highlighting challenges around 
people’s willingness to share data reciprocally, and engaging 
in meaningful interactions with such data. Here, we outline 
future design considerations for CM, as well as 
understandings of people’s perceptions and current practices 
around collective sensemaking [21].  

Significance of everyday activities 
A common theme in our findings is the significance of 
everyday activities as abstractions for exploring and 
understanding data. Our participants got more value out of 
seeing data about specific events or activities that they 
engaged in with others. Prior work points to ways of 
supporting this abstraction with pre-processing and 
visualisation, where subsets of data from meaningful events, 
locations and activities are presented to people as ‘cuts’ [16]. 
While this work placed an emphasis on individuals and their 
personal goals, it is evident from our findings that the 
concept of a ‘cut’ is highly relevant for reciprocal sharing 
and collaborative exploration of data. But how might these 
be best represented for social sensemaking, and what 
implications might they have for sharing and collaboration? 

In one sense, interactions with cuts might support the 
development of ‘mental models’ of the relationships between 
physiological indicators and behavioural and environmental 
factors. This was an issue that arose from people’s attempts 
of trying to make sense of their own data, and is further 
increased in interactions with the data of others. Some 
examples might be people looking for traces of work related 
stress from their heart rate data or trying to understand what 
meaningful levels of heart rate might be for physical 
activities, and how these change. Related work by Wang et 
al. [37] investigated how sensor data reveals effects of 
increased workload on students’ health, mental well-being 
and academic performance. Behavioural trends clearly 
impact on physiological indicators and cuts can provide 
useful units for analysing and monitoring these longer-term 
correlations, and better understanding them by sharing, 
discussing and collaborating with others. 

Extended sharing preferences 
Our findings have shown that the use of temporal semantics 
for specifying sharing preferences, and the possibilities of 
sharing with strangers, sometimes led to anxieties related to 
the open-endedness around who could see what. A promising 
role for cuts in sharing data is to limit the scope of what is 

shared to manageable and meaningful units. For example, 
consider activities like the 5-a-side football match: some 
people who engaged in this collaborative data collection 
activity might not wish to share their data outside of this 
particular event. They might only want share and compare 
this specific activity instead of a specific day or time interval 
[14]. In Epstein et al.’s [16] study, people pointed out that 
they are more likely to share cuts as summaries, instead of 
raw daily lifelogs which can be overwhelming to understand 
and might reveal too much [14]. In a sense, some of our 
participants already marked and annotated cuts in the data by 
highlighting segments linked to comments or discussion.  

Participants expressed an interest in extending this feature to 
support additional functionality such as automatic tagging of 
events and highlighting of interesting relations in data, both 
on an individual level and in relation to others. Tsubouchi et 
al. [36] have attempted to detect social relationships using 
machine learning on Fitbit fine-grained sensor data. By 
adding this to CM we could present people with some of the 
cuts and social context automatically detected in the data, 
using these as our basic units for sharing and discussing data 
with others. While participants could do this themselves, the 
automated detection of individual and shared experiences 
might provide a more effective model for sustaining 
engagement with the platform and data. Importantly, this 
might also be applied to alleviate concerns about how others 
might see their data (e.g., using pattern recognition to suggest 
potentially sensitive cuts prior to sharing). While cuts serve 
as sensible units for sharing and indexing data, they must be 
integrated into CM in a coherent way, alongside the data 
narratives and chunks that were beneficial to participants. 
Key challenge for design is balancing tensions of providing 
freedom to share, explore, and customise the flow of data, 
while also providing engaging routes into interactions with 
the data and alleviating anxieties around willingness to share. 

CONCLUSION 
We investigated the concept of social sensemaking with the 
Citizen Makers platform, which allows individuals to share 
and explore their fine-grained fitness tracker data in relation 
to others. Our study demonstrates that with this type of data, 
privacy concerns might be alleviated using abstractions of 
the data and the mutual benefits of sharing these. However, 
the value is foremost when people share a common activity, 
interest or goal. 
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