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ABSTRACT 
 

Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) 

stability, we know little about mid-to long term changes in grounding line migration, ice 

streaming and ice accumulation in the upper Institute Ice Stream (IIS) catchment. In this thesis 

ground penetrating radar (GPR) and airborne radio-echo sounding (RES) methods have been 

employed to investigate the subglacial topography, internal stratigraphy and Holocene flow 

regime of the upper IIS catchment, in and around Horseshoe Valley. High resolution step-and-

collect mode GPR was employed to assess the continuity of a Blue Ice Area (BIA) horizontal 

ice core climate record at Patriot Hills, where analysis has revealed two unconformities in the 

otherwise conformable 30,000 year climate sequence. By combining these data with airborne 

RES returns and pre-existing ice sheet models it is suggested that these unconformities represent 

periods of erosion, occurring as the former ice surface was scoured by katabatic winds in front 

of Liberty and Mable Hills. Snow_Blow simulations suggest that katabatic winds have scoured 

the leeward slopes of these mountain ranges for over 10,000 years. This temporal stability can 

account for the large volume of BI moraine deposits in Horseshoe Valley, where compressive 

BI flows promote glacial erosion and near-surface debris entrainment through freeze-on 

processes at the ice/bed interface and compressive thrust faulting. By investigating thicker ice 

flows in the upper IIS catchment and the Evans Ice Stream, this thesis has also analysed debris 

entrainment mechanisms at depth, where clasts are incorporated into the ice flow by englacial 

stratigraphic folding and shearing at the glacial thermal boundary, governed by spatial and 

temporal changes in ice flow, ice temperature and sediment availability. Mid-to long term 

changes in ice flow in the wider IIS catchment have been investigated from airborne RES 

transects, revealing internal layer buckling, and therefore former enhanced ice-sheet flow in 

three distinct tributaries of the IIS. Buckled ice layers throughout the slow flowing ice in the 

Independence Trough and the fast-flowing ice in the Ellsworth Trough suggest that enhanced 

ice flow through these topographically confined regions was the source of ice streaming and ice-

flow reconfiguration during the mid-to-late Holocene. Although buckled layers also exist within 

the slow-flowing ice of Horseshoe Valley, a thicker sequence of surface-conformable layers in 

the upper ice column suggests slowdown more than 4000 years ago, indicating that enhanced 

flow switch off here cannot be attributed to late-Holocene ice flow reorganisation. The dynamic 

nature of ice flow in the IIS and its tributaries suggests that ice stream switching and mass 

change may have been regular during the Holocene, and that these changes may characterise the 

decline of the WAIS in this area. These results have important implications for our 

understanding of ice-sheet dynamics and the response of the ice sheet to climate change and 

provides explanations for fluctuations in debris entrainment and transportation processes in 

Antarctica.   
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CHAPTER 1 

Introduction and background 

 

1.1 Introduction  and project rationale 

The West Antarctic Ice sheet (WAIS) is a marine based ice sheet with its centre situated on 

bedrock well below sea level, where the deepest known ice rests up to 2555 m below eustatic 

sea level [Fretwell et al., 2013], which introduces potential instabilities that could lead to its 

rapid collapse [Weertman, 1974; Mercer, 1978]. The risk is that the volume of ice held in West 

Antarctica, if lost, would be sufficient to raise eustatic sea level by 5 m if all the ice disappeared 

or by 3.3 m if ice caps remained on the main mountain blocks [Bamber et al., 2009; Hein et al., 

2016a]. Draining a combined area of 218,000 km2 [Joughin and Bamber, 2005] (~11% of the 

WAIS total), the Institute Ice Stream (IIS) and Möller Ice Stream (MIS) are major outlets of the 

WAIS, where ice and entrained sediment accumulations drain from the WAIS dome into the 

Filchner-Ronne Ice Shelf (FRIS) and ultimately, the Weddell Sea. Both IIS and MIS have steep 

reverse bed slopes (where the bed slopes downwards inland of the grounding line) and areas of 

low basal roughness which could make them susceptible to unstable grounding line retreat [Ross 

et al., 2012; Wright et al., 2014]. However, despite IIS being critical to our evaluation of WAIS 

stability and the likelihood of future sea level change from ice sheet loss [Bentley et al., 2010], 

dyn�D�P�L�F�� �I�R�U�P�H�U�� �F�K�D�Q�J�H�V�� �L�Q�� �L�F�H�� �I�O�R�Z�� �Z�L�W�K�L�Q�� �W�K�H�� �L�F�H�� �V�W�U�H�D�P�¶�V��upper catchment area are poorly 

constrained. 

Although recent advances in cosmogenic nuclide analysis [Fogwill et al., 2012; Hein et 

al., 2016a, 2016b], horizontal climate record interpretations [Turney et al., 2013] and ice sheet 

model simulations [Golledge at al., 2013] have helped to improve our understanding of past ice 

sheet thickness and climate in the Weddell Sea sector of West Antarctica many assumptions 

have been made. These include Holocene ice flow trajectories, debris availability and 

entrainment, meteorological conditions (including the frequency of katabatic winds and snow 

accumulation) and the stability of local Blue Ice Areas (BIAs). Until geophysical data have been 

collected, analysed and modelled these climate record interpretations and model simulations 
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will remain un-justified. Combined with fears of ice sheet instability, it is now more important 

than ever to investigate the past and present behaviour of the WAIS, particularly in the upper 

IIS catchment.  

In order to appreciate past and present ice sheet conditions it is necessary to determine 

basal topography, ice sheet thickness, flow direction and extent [Campbell et al., 2013]. This 

can be achieved through the analysis of geophysical data, where radargrams from ice 

penetrating radar surveys can reveal information about the bed topography, ice sheet surface and 

internal stratigraphy of the ice at a variety of scales. As recent airborne ice penetrating radar 

surveys have focussed on the main trunk of the IIS and MIS (near the FRIS grounding line), 

where investigations by Siegert et al. [2013] and Bingham et al. [2015] have recorded the basal 

topography and internal stratigraphy along the main arteries of the ice streams, where Holocene 

ice flow reconfigurations were recognised near the local FRIS grounding line, this thesis will 

investigate the englacial stratigraphy, debris entrainment processes and ice sheet stability of ice 

flowing in and around the Ellsworth Mountains, in the upper IIS catchment. Findings will be 

compared to local climate records and cosmogenic nuclide derived ice sheet retreat dates to 

determine the timings of any changes, whilst numerical models will be consulted to determine 

the stability of the ice sheet in and around Horseshoe Valley. Ice penetrating radar will also be 

used to assess the availability of debris and debris entrainment mechanisms in and around the 

Ellsworth Mountains. This work will provide the first detailed account of volume fluxes and 

debris entrainment processes beneath the thick Antarctic ice sheet.  

 

1.2 Research aims and objectives 

The overall aim of this PhD project is to: 

Investigate the past and present behaviour of the West Antarctic Ice Sheet in and around 

Horseshoe Valley and the upper Institute Ice Stream catchment in order to determine changes 

in ice flow and debris entrainment due to grounding line migration, ice streaming and ice 

accumulation under a changing climate.  
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In order to fulfil this aim, a number of research objectives have been identified. 

 

Objective 1: Analyse englacial stratigraphy within the Blue Ice Area at Patriot Hills to 

determine historic changes in ice flow and/or accumulation 

High precision GPR collected by the Northumbria PulseEKKO system in 2013/2014 will be 

used to determine the englacial stratigraphy within the BIA at Patriot Hills. Data will be 

processed in ReflexW (version 6.1.1) and analysed in MATLAB (R2013a) and Opendtect 

(2015) to highlight prominent internal GPR reflectors within the BIA in both 2D and 3D. The 

imagery will be analysed systematically to separate conformable internal layering (indicative of 

stable firn/ice accumulation) to discontinuous englacial layers (which reveal instability in the 

accumulation or flow). By combining a variety of datasets from the Heritage Range (e.g. ice 

elevation data [Fretwell et al., 2013], ice velocity measurements [Rignot et al., 2011], climate 

records [Turney et al., 2013], Parallel Ice Sheet model simulations [Fogwill et al., 2014] and 

cosmogenic nuclide derived ice thickness measurements [Hein et al., 2016a, 2016b]) with the 

GPR record it will be possible to establish the cause of any changes in ice flow during the 

Holocene. Results will also be used to improve high precision climate reconstructions in the 

area, deduced from the analysis of surface deuterium isotope samples collected along Patriot 

Hills BIA by Turney et al. [2013] in 2012.  

  

Objective 2: Determine the internal structure of the West Antarctic Ice Sheet in the upper 

Institute Ice Stream catchment to establish historic changes in regional ice streaming  

Airborne RES data collected in and around the Ellsworth Mountains by Dr. Neil Ross 

(Newcastle University) and collaborators during an aero geophysical investigation of IIS and 

MIS in 2011/2012 will be processed in ReflexW and analysed in 2D and 3D (in MATLAB and 

Opendtect respectively) to determine the internal structure of the WAIS in and around 

Horseshoe Valley. Published RES radargrams from the Weddell Sea sector of West Antarctica 

(e.g. Siegert et al. [2013]) have already revealed strong bed horizons and complex internal 

layering in this region, where a variety of internal and subglacial features have been identified. 
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These features include conformable layering, discontinuities, folding, fracturing and crevassing. 

Analysis of similar internal features in the airborne RES dataset will allow Holocene flow 

regimes in the upper IIS to be determined. These findings will indicate whether the Horseshoe 

Valley Trough, the Independence Trough and the Ellsworth Trough were important tributaries 

of the IIS, both in its current configuration and in the Holocene configurations hypothesised by 

Siegert et al. [2013]. These results are critical for the ice sheet modelling community, where 

findings will help to determine the historic and future stability of the WAIS in the Weddell Sea 

sector.  

 

Objective 3: Investigate debris entrainment mechanisms in the Weddell Sea sector of the 

West Antarctic Ice Sheet 

In order to constrain the location and form of debris bands in the ice flows surrounding 

Horseshoe Valley in the upper IIS, strong and often steeply dipping englacial features within 

previously analysed GPR and RES transects (collected to fulfil objective 1 and 2) will be 

mapped and analysed in 2D and 3D using ReflexW and Opendtect respectively. Controls on 

sediment availability and debris entrainment mechanisms in Antarctica will be considered 

before site specific processes are discussed. Comparisons will be made to wider ground RES 

surveys across Horseshoe Valley, supplied by Dr. Andrés Rivera (Centro de Estudios 

Científicos) as well as an airborne RES flight line across the Evans Ice Stream, supplied by Dr. 

David Ashmore (Aberystwyth University). By calculating approximate volumes of debris in the 

glacial system it will be possible to better understand erosive rates in Antarctica, landform 

development and the transport of debris from the continent to the Southern Ocean. Suggestions 

will be made regarding the significance of these findings in relation to ice streaming and ice 

sheet stability.  

 

Objective 4: Model the transport of snow by wind in Horseshoe Valley and compile a 

sensitivity analysis to determine the conditions necessary to initiate and maintain Blue Ice 

Areas in front of the Patriot, Independence and Marble Hills 
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�5�R�V�V���3�X�U�Y�H�V�¶��snow drift model which was recently coded as an ArcGIS (Python) script by Dr. 

Stephanie Mills at the University of Plymouth and Dr. Anne Le Brocq at the University of 

Exeter for paleoglaciological reconstructions will be used to improve the understanding of blue 

ice erosion and snow-drift accumulation in Horseshoe Valley. A 40 m resolution SPOT digital 

elevation model (DEM) will form the primary input, along with automatic weather station data 

from Patriot Hills and field observations. Results will be compared to satellite imagery to 

validate the Snow_Blow model. In order to establish how thick the ice needs to be to maintain 

katabatic wind flow (necessary for blue ice formation), ice elevation data will be altered in 

subsequent model runs. Ice sheet elevations will be provided by Dr. Andrew Hein from the 

University of Edinburgh, who used cosmogenic nuclide analysis to date the exposure ages a 

number of boulders at a variety of elevations along Patriot and Independence Hills. Deuterium 

�L�V�R�W�R�S�H���P�H�D�V�X�U�H�P�H�Q�W�V���I�U�R�P���'�U�����&�K�U�L�V���7�X�U�Q�H�\�¶�V��(University of New South Wales) climate core 

will also be used to confine palaeo ice surfaces. These findings will define the current state of 

erosion and ice flow in front of Patriot and Independence Hills, enhance our understanding of 

former ice sheet conditions and improve optimal forecasts through sensitivity testing using 

precise ice sheet surfaces. 

 

Achieving the objectives outlined above will allow the past and present behaviour of the WAIS 

in and around Horseshoe Valley and the upper IIS to be determined. This will fulfil the overall 

aim of this thesis. Each data set will first be considered separately, to identify ice flow processes 

operating at different scales, before the data sets are combined with ice velocity data, climate 

records, cosmogenic nuclide data and model simulations to determine the controls on ice flow 

and debris entrainment in and around Horseshoe Valley. This research will  provide firm 

constrains to the scientific communities concerned with Antarctic ice sheet evolution, where 

results will be particularly relevant to the ice sheet modelling, climate and sea level 

communities.   
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1.3 Thesis structure  

The structure of this thesis is summarised below: 

 

SECTION I: Relevant background for the thesis will be summarised in Section 1. Chapter 2 

will review our current understanding of ice flow and ice sheet stability.  Chapter 3 will provide 

a detailed study site description of the Horseshoe Valley and the upper Institute Ice Stream 

Catchment in the Weddell Sea Sector of West Antarctica. Chapter 4 will describe the methods 

used in this thesis, by introducing the relevant background theory for ice penetrating radar data 

collection and data processing as well as ice velocity data acquisition. 

 

SECTION II : This section will present results and interpretations of data collected from the 

upper Institute Ice Stream catchment. Chapter 5 will determine historical ice sheet flow in 

Horseshoe Valley by presenting results, interpretations and discussions from ground penetrating 

radar transects collected across Patriot Hills Blue Ice Area, while Chapter 6 will present results 

and discussions from regional airborne radio-echo sounding of the upper Institute Ice Stream. 

Englacial debris recorded in ground penetrating radar and radio-echo sounding transects will be 

examined in Chapter 7, where debris sources in and around Horseshoe Valley will be discussed 

along with debris entrainment mechanisms in Antarctica. Simulations of katabatic wind flow 

and snow drift will then be presented in Chapter 8, in order to investigate the controls on Blue 

Ice Area formation and evolution.  

   

SECTION III : This section will discuss the major findings of the study and will synthesise the 

interpretations discussed in section II. Chapter 9 will provide a synthesis of the evolution of ice 

sheet flow in and around Horseshoe Valley whilst Chapter 10 will summarise key findings and 

conclusions from the thesis, where suggestions for further work will also be made.   
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CHAPTER 2 

Ice flow and ice sheet stability  

 

This chapter will review the current understanding of ice flow and ice streaming in ice sheets. 

Potential instabilities in ice sheets, driven by internal and external forces will be discussed, 

along with techniques capable of detecting past and present ice sheet conditions. 

 

2.1 Introduction  

Large ice sheets form an integral part of the �(�D�U�W�K�¶�V�� �F�O�L�P�D�W�H�� �V�\�V�W�H�P�� �>Solomon et al., 2007], 

where they exert a strong control over atmospheric circulation patterns [Roe and Lindzen, 

2001], ocean overturning [Hemming, 2004] and global sea level (Figure 2.1). It is for this reason 

that recent, dramatic examples of mass loss from the Greenland [Kahn et al., 2015] and 

Antarctic Ice Sheets [Shepherd et al., 2010; 2012] have heightened concern for unprecedented 

and irreversible global change. Although this fear stemmed from measured atmospheric and 

oceanic warming, where subsequent climate simulations and predictive ice sheet models have 

heightened concerns for unprecedented change in the future [Collins et al., 2013] (Figure 2.2), 

many of the observed mass-loss processes are not driven directly by ice surface melting, but 

instead they involve the flow of ice, and as such, this is the primary focus of this literature 

review.  

 

2.2 Ice Sheets 

Only two large, kilometres-thick continental ice sheets exist on Earth today; in Greenland and 

Antarctica, where they differ from smaller scale versions, termed ice caps, which can be found 

in the Canadian, Norwegian and Russian Arctic, as well as some small islands in the Southern 

Ocean, and much more abundant steeper mountain glaciers, where ice flow is controlled by 

bedrock topography. Ice sheets in Greenland and Antarctica are maintained by cold surface 

temperatures which are largely a function of their high latitude and elevation, which has allowed 

the ice sheets to sustain a net accumulation of snow at their centre for hundreds of annual
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Figure 2.1. The interaction of ice sheets with the climate system and ocean circulation. This 
schematic figure was obtained from IPCC AR5 (Figure 1 in box 5.2) [Masson-Delmotte et al., 
2013].  
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Figure 2.2. Global mean temperature change averaged across all Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models (relative to 1986�±2005) for the four 
Representative Concentration Pathway (RCP) scenarios: RCP2.6 (dark blue), RCP4.5 (light 
blue), RCP6.0 (orange) and RCP8.5 (red); 32, 42, 25 and 39 models were used respectively for 
these 4 scenarios. Likely ranges for global temperature change by the end of the 21st century are 
indicated by vertical bars. Note that these ranges apply to the difference between two 20-year 
means, 2081�±2100 relative to 1986�±2005, which accounts for the bars being centred at a smaller 
value than the end point of the annual trajectories. For the highest (RCP8.5) and lowest 
(RCP2.6) scenario, illustrative maps of surface temperature change at the end of the 21st century 
(2081�±2100 relative to 1986�±2005) are shown for two CMIP5 models. These models are chosen 
to show a rather broad range of response, but this particular set is not representative of any 
measure of model response uncertainty. This graph was obtained from IPCC AR5 (FAQ 12.1, 
Figure 1) [Collins et al., 2013]. 
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climate cycles. Lower surface elevations and sometimes lower latitudes can lead to warmer 

surface temperatures near the ice-sheet margins, where mass loss may occur as a function of 

significant marginal melting (typical of the south-western Greenland Ice Sheet [Fettweis et al., 

2011]) or ice-berg calving, when ice spreads to the continent margins and begins to float at the 

grounding line (characteristic of the Antarctic Ice Sheet).  

 

2.3 Antarctic Ice Sheet 

The Antarctic Ice Sheet (Figure 2.3) covers an area of ~13.5 million km2 and contains a total ice 

volume of 25.4 million km3 (including ice shelves) [Benn and Evans, 2010]. This makes the 

Antarctic Ice Sheet the largest freshwater ice mass on the globe, where Bennett and Glasser 

[2009] have estimated that it could store approximately 70% of the entire world�¶s fresh water, 

which would contribute a change in eustatic sea level of ~57 m, should the ice sheet melt 

completely [Lythe et al., 2001]. It is for this reason that an understanding if ice-flow dynamics 

in Antarctica is urgently needed, as even a modest change in ice-sheet volume would impact sea 

level around the globe and increase freshwater flux to the oceans [Lemke et al., 2007].  

The Antarctic Ice Sheet can be divided into two major ice sheets: the East Antarctic Ice 

Sheet (EAIS), which has a grounded ice volume of 21.7 million km3 and the West Antarctic Ice 

Sheet (WAIS), which has a total grounded ice volume of 3 million km3 [Benn and Evans, 2010] 

(Figure 2.3). The two ice sheets are divided by the Transantarctic Mountains (Figure 2.3). The 

EAIS rests on a large land mass, while the majority of the smaller WAIS is grounded below sea 

level, where ice flows into two large ice shelves (the Filchner-Ronne Ice Shelf and the Ross Ice 

Shelf) or through several smaller outlet glaciers. 

 

2.4 Stability of the West Antarctic Ice Sheet  

Potential instabilities in the WAIS were first proposed in the late 20th century by Weertman 

[1974] and Mercer [1978] (Figure 2.4), who recognised the urgent need to study and understand 

the stability of marine based ice sheets, particularly under a changing climate. These pioneering  
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Figure 2.3. Map of Antarctica showing a) Surface velocities in Antarctica, generated from 
Rignot et al., [2011a], where the channelised structure of ice-stream flow is clearly visible in 
both the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet (EAIS), which are 
largely separated by the Transantarctic Mountains, b) Cross section through West Antarctica, as 
shown by the line A-�$�¶���L�Q�����D�������Z�K�H�U�H���W�K�H���L�F�H���V�K�H�H�W���E�H�G���L�V���P�R�V�W�O�\���V�L�W�X�D�W�H�G���E�H�O�R�Z���V�H�D���O�H�Y�H�O���D�Q�G���F����
Cross-section of the EAIS, from B-�%�¶�����Z�K�H�U�H���W�K�H���P�D�M�Rrity of the ice sheet rests on land above 
sea level.  
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Figure 2.4. A comparison of the area of the Antarctic Ice Sheet calculated to survive after a 
collapse of the West Antarctic Ice Sheet in studies by (A) Mercer [1978] and (B) Bamber et al. 
[2009], (from Bamber et al. [2009]). 
  

A 

B 
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studies proposed that the removal of floating ice shelves would result in a rapid and irreversible 

inland migration of the grounding line. It was hypothesised that such a retreat would encourage 

progressively thicker ice at the ice sheet margin, which would lead to higher ice mass loss and 

further grounding line retreat [Rignot and Jacobs, 2002; Schoof, 2007]. In addition, rising sea 

level would allow more ice at the margin of the ice sheet to float, producing instabilities in the 

ice shelf, which would cause the ice to flow more rapidly into the oceans.  

The risk of this instability was quantified in the early 21st century when it was 

determined that the volume of ice held in the WAIS, if lost, would be sufficient to raise sea 

level by 5 m if all the ice disappeared, or by 3.3 m if icecaps remained on the main mountain 

blocks [Lythe et al., 2001; Bindschadler, 2006; Bamber et al., 2009]. Although entire ice sheet 

loss is thought to be a high risk, low probability event [Bamber et al., 2009] there is evidence 

that the WAIS was substantially larger than today [Bentley et al., 2010] and that the WAIS was 

smaller during past interglacials [Hein et al., 2016a]. It is also worth noting that several ice 

sheets of similar sizes, such as the North American Laurentide Ice Sheet (estimated volume of 

18-35 million km3 [Fisher et al., 1985; Hughes et al., 1981]) have completely disintegrated in 

the past.  

�$�V���W�K�H���O�D�V�W���W�K�U�H�H���G�H�F�D�G�H�V���R�Q���W�K�H���(�D�U�W�K�¶�V���V�X�U�I�D�F�H���K�D�Y�H���E�H�H�Q���V�X�Fcessively warmer than any 

preceding decade since 1850, global climate change currently poses the greatest threat to ice 

sheet stability [Collins, 2013]. Although globally averaged land and ocean surface temperatures 

show a warming of 0.65°C �± 1.06°C over the period 1880 to 2012, some areas like the Antarctic 

Peninsula have experienced even greater rapid regional warming, where temperatures have risen 

by nearly 3°C since 1951 [Meredeth and King, 2005]. Here, measured atmospheric and oceanic 

warming (Figure 2.5) has led to increased concern over the stability of high-latitude, ocean- 

terminating glaciers in Antarctica. This includes Pine Island glacier and Thwaites glacier which 

are situated on the East Pacific side of West Antarctica, where recent studies have suggested 

that full collapse of the main trunk of Pine Island glacier could occur in the next 100-200 years 

[Gladstone et al., 2012]. Unlike ice flows draining into the Weddell Sea or Ross Sea, Pine   
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Figure 2.5. Antarctic ice shelf ice thickness change rate between 2003-2008 from Pritchard et 
al. [2012]. Average sea floor potential temperatures - acquired from the World Ocean 
Circulation Experiment Southern Ocean Atlas are also plotted. Grey circles show relative ice 
losses for ice-sheet drainage basins (outlined in grey) that lost mass between 1992 and 2006.  
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Island and Thwaites glaciers do not have large ice shelves to shield their grounding lines from 

external influences. Instead, these glaciers, which are currently the fastest flowing ice streams in 

West Antarctica, with grounding line speeds of nearly 4000 m yr-1 [Joughin et al., 2010] drain 

into much smaller ice shelves, which are only a few tens of kilometres wide. As the drainage 

basins of both ice streams overlie deep subglacial depressions with reverse bedrock slopes, 

these ice streams are thought to be the most vulnerable part of the WAIS to climate and sea 

level changes. Studies have already recorded thinning (Figure 2.6) [Wingham et al., 2009] and 

grounding line retreat here [Rignot et al., 2014] �± both of which are believed to have occurred in 

response to increased ocean temperatures [Shepherd et al., 2004]. By investigating the flow of 

ice in areas vulnerable to change, it may be possible to predict how the ice sheet could evolve in 

the future, particularly under a changing climate.  

  

2.5 Ice Sheet Flow  

In large ice sheets snow and ice is transferred from the interior ice sheet to the ice sheet margins 

by ice flow, which can occur through plastic or brittle deformation (Figure 2.7). This is typically 

facilitated by deformation of the ice, basal sliding or deformation of the glacier bed. Under one 

or more of these processes, the ice can move through the landscape, delivering snow and ice to 

areas where ablation exceeds accumulation, and eventually to the ice sheet margins, where 

meltwater and icebergs can exit the system [Benn and Evans, 2010]. Due to the importance of 

each mechanism with respect to ice sheet flow, the processes of internal deformation, basal 

sliding, deformation of the glacial bed and ice flow velocity have been detailed below, and 

accounted for visually in Figure 2.8. 

 

2.5.1 Internal deformation  

Internal ice deformation is the most dominant ice flow process, occurring in virtually all moving 

ice when gravity and the weight of overlying firn and ice cause ice crystals at depth to move in 

response to stress. In most locations, the crystals orientate themselves in parallel layers which  
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Figure 2.6. Elevation change rate (cm/year) from 1992 to 2003 for 8.5 x 106 km2 of the 
grounded Antarctic Ice Sheet interior as measured by Davis et al. [2005].  
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Figure 2.7. Schematic diagram of glacier flow from Gabler et al. [2009]. The weight of 
overlying snow and ice allows most movement to occur by plastic deformation, although basal 
sliding is possible if meltwater is available at the bed. The entire ice column moves at the same 
velocity during basal sliding (B-�%�¶�����E�X�W���Y�H�O�R�F�L�W�\���L�V���J�U�H�D�W�H�V�W���D�W���W�K�H���J�O�D�F�L�H�U�¶�V���V�X�U�I�D�F�H����A-�$�¶�����Z�K�H�Q��
plastic flow dominates. This is a result of pressure; pressure is greater lower in the ice column 
but plastic flow is cumulative upwards so that flow deeper in the ice column carries along 
overlying ice layers, like the zone of brittle ice.  
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Figure 2.8. The velocity distribution within three glaciers of different basal thermal regimes 
resting on bedrock and deforming substrates. A vertical line a-b inserted in the glacier would be 
displaced as follows: a) cold-based glacier resting on hard bedrock: movement is by internal 
deformation alone, b) warm-based glacier resting on hard bedrock: the vertical line a-b is 
displaced from c-d by basal sliding and e-g by internal deformation, and c) warm-based glacier 
resting on deformable sediment: the line a-b is displaced to c-d by subglacial sediment 
deformation, to e-f by basal sliding and e-g by internal deformation. This figure has been 
modified from Boulton [1993]. 
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can glide over each other, but this only happens when a threshold pressure from the overlying 

ice mass is exceeded. This typically occurs when the ice is at least 30 m thick [Cuffey and 

Patterson, 2010]. Although internal deformation is a dominant ice flow process, rates of creep 

typically decrease with depth when a glacier flows through internal deformation alone, as high 

resistive stresses at the glacial bed and valley side walls allow ice to flow much faster near the 

surface of the glacier [Jiskoot, 2011].  

 

2.5.2 Basal sliding 

When glaciers are not frozen to the substrate (bedrock or sediments), internal deformation at 

depth may occur through enhanced basal creep and/or regelation processes, which can promote 

ice flow through basal sliding [Jiskoot, 2001] (Figure 2.8). Although basal creep and regelation 

both occur when local increases in pressure on the upstream side of a bedrock bump lower the 

melting point of ice, which forces it to melt and move towards the leeward side of the bump 

(where pressure is lower and where refreezing occurs [Jiskoot, 2001]), enhanced basal creep is 

more efficient for large bedrock obstacles (>1 m wide [Boulton, 1972]), whilst regelation is 

much more efficient round smaller obstacles (which are generally < 1 m wide [Boulton, 1972]). 

Whilst both of these processes can occur without bed separation, a thin layer of water at the ice-

rock interface can reduce basal friction and hydrostatic pressure, and enhance basal sliding. This 

allows the ice to slide forwards, often at an increased velocity [Alley, 1993]. 

 

2.5.3 Bed deformation  

In addition to internal deformation processes, Figure 2.8 details how ice flow can also be 

promoted by the deformation of soft sediment or weak rock beneath a glacier. This type of 

deformation typically occurs in temperate ice flows, when high water pressure in the pores or 

spaces between fine basal sediments like clay or sand reduces the resistance between individual 

grains, which allows the sediment to move or flow relative to one another as a slurry-like mass 

[Jiskoot, 2011]. Provided that the basal shear stress imposed by the overriding glacier is greater 
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than the yield strength of the till, some, or all of this shear stress can be accommodated by bed 

deformation - as the slurry of sediment forms a continuously deforming layer on which the 

glacier moves [Jiskoot, 2011]. As bed deformation is primarily controlled by the mechanical 

and hydrological properties of the sediment below, rather than properties of the ice, ice flow 

through bed deformation is controlled by the yield strength of the sediment, which is highly 

dependent on the grain size distribution, the fractional water content and the water pressure 

within the till. as well as its deformation history [Jiskoot, 2011], where the amount of bed 

deformation is dependent on till thickness, till composition and water pressure. As subglacial till 

is a highly heterogeneous material, where yield strength and bed deformation can vary spatially 

and temporally there are no standard constitutive relationships or general flow laws for soft bed 

deformation. Although most soft bed deformation laws assume an average till deformability 

based on field measurements [Boulton and Hindmarsh, 1987], laboratory experiments [Iverson 

et al., 1998] or mathematical understanding of till physics [Fowler, 2003], a number of studies 

(e.g. Iverson et al. [1988] and Tulaczyk et al. [2000]) have recognised that till deformation rate 

is dependent on the amount of shear stress. As till behaves like a plastic material, a quasi-

viscous flow law (equation 2.1) is often used [Hooke, 2005].  

 

�B�6
L �� �6��
�¤

�c�X�œ�,                                                              (2.1) 

 

Where �B�6 is direct strain, A2 is a constant related to a reference strain rate, b a constant that is 

dependent on pre-consolidation stresses and texture of till, and �R�4 the stress taken at a reference 

shear strain (larger than the Mohr-Coulomb yield strength) [Hooke, 2005]. This relationship 

implies that small increases in shear stress should result in large increases in till deformation 

(which accounts for unstable runaway flow of glaciers over soft deformable beds, which in 

extreme cases could result in surges �± see section 2.5.7) [Jiskoot, 2011]. 
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2.5.4 Flow velocity 

As deformational ice flow velocity depends on the local balance between the driving forces 

(largely controlled by gravitational acceleration downslope) and resisting forces which slow the 

ice down (e.g. drag at the bed and at the margins of the glacier) (Figure 2.9), the rates and 

patterns of glacier motion vary enormously from one location to another. However, ice velocity 

is ultimately controlled by four processes: temperature, ice thickness, bedrock and gradient. In 

general, warmer temperate and polythermal glaciers can flow faster than cold, polar glaciers as 

the ice can deform more readily, whilst the re-routing of surface meltwater can allow the basal 

ice to slip, thereby greatly increasing velocity [Bennett and Glasser, 2009]. The thickness of the 

ice sheet (a function of climate and resultant mass balance conditions) is also very important, as 

thicker ice can exert more pressure on the bed, which will promote deformation and basal slip. 

The amount of deformation and sliding is then largely dependent on bedrock composition and 

topography, as more rapid movement can occur over loose sediment or easily deformable rock 

like clay or shale, whilst harder bedrock like sandstone or granite creates greater friction 

[Boulton, 1972]. In terms of topography, ice flowing over steep gradients will also experience 

high surface gradients, which can greatly increase gravitational acceleration downslope [Benn 

and Evans, 2010]. Combined, each of these processes can alter ice flow velocity both spatially 

and temporally. These variations can occur over a variety of scales, both between neighbouring 

ice flows and within large ice sheets, ice caps or smaller glaciers. For example, in individual ice 

flows velocity tends to be greatest near the equilibrium line (where accumulation equals 

ablation over a 1-year period) where the ice is relatively thick, whilst reduced ice flow velocities 

are recorded along the ice margins where flow is retarded by friction. In most ice masses these 

spatial changes in velocity occur in response to compressive and extensional flow.  

 

2.5.5 Compressive and extensional flow 

Although the majority of an ice flow experiences plastic deformation, the upper surface of a 

glacier is often dominated by brittle ice which is carried along by movements in the underlying  
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Figure 2.9. Driving and resisting stresses operating on a block of ice on an inclined slope.  
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plastic deformation zone (Figure 2.7). As the mid-lower ice column flows, the glacier surface 

can often experience tensional stress as it become stretched, which can create large cracks and 

fractures in the surface, called crevasses. These extensional crevasses typically form when ice 

flows over steep subsurface gradients, or when the ice flow becomes less confined (Figure 

2.10). This allows the glacier to accelerate and thin. However, compressional crevasses can also 

form when the opposite occurs, i.e. when there is a reduction in subsurface gradient which 

forces the ice flow to slow down, or when the ice flow becomes confined (Figure 2.10). 

Although surface gradient largely controls the flow regime of an ice mass, this literature review 

demonstrates that subglacial topography can also impose compressive and extensional flow 

regimes, particularly in areas of high topographic relief. 

 

2.5.6 Ice flow in Blue Ice Areas  

Blue Ice Areas (BIAs) represent regions of exposed ice with a relatively low surface albedo 

[Bintanja, 1999], where katabatic wind-driven snow erosion and enhanced sublimation of the 

ice surface [Jonsson, 1990; Van den Broeke and Bintanja, 1995, Casassa et al., 1998] create a 

negative surface mass balance which is counteracted by emerging ice as a result of compressive 

flow (Figure 2.11). This local ice flow phenomenon is unique to the Antarctic continent, where 

BIAs cover approximately 0.8 �± 1.6 % of the entire ice sheet surface (Figure 2.12) and vary in 

size from a few hundred square metres to thousands of square kilometres [Winther et al., 2001]. 

BIAs typically materialise in the vicinity of mountain ranges and nunataks, where the exposed 

bedrock highs and subglacial bedrock ridges tend to slow down or dam ice flow. Combined 

with surface ablation from katabatic wind scour and flow around the mountain range, this 

compression forces older ice to rise towards the surface where it is exposed in the typically 

rippled blue ice surface [Bintanja, 1999; Fogwill et al., 2012]. This flow phenomenon enables 

ice at the surface to range from zero to hundreds of thousands of years old [Fogwill et al., 2012; 

Turney et al., 2013], which creates a unique opportunity for investigating past climate [Orheim 

and Lucchitta, 1990]. The collection of ice surface samples across a horizontal BIA climate  
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Figure 2.10. Compressive and extending flow in glaciers. Compressive flow is associated with 
a decrease in subglacial slope and angle or a change from warm-based ice to cold-based ice, 
while extending flow is encountered where the glacier bed steepens or with a cold-based to 
warm-based thermal boundary. Note that the pattern of surface crevasses differs between the 
two flow types. This figure has been modified from Bennett and Glasser [2009].  
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Figure 2.11. Schematic representation of a closed type Antarctic Blue Ice Area (BIA) . The 
isochrones represent individual annual layers which flow up to the BIA surface as a result of 
strong erosion from katabatic winds which flow from the ice sheet interior. The oldest 
isochronal layers are exposed near the nunatak. This figure has been modified from Van Den 
Broeke and Bintanja [1995]. 
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Figure 2.12. a) Location of Antarctic Blue Ice Areas (BIAs), superimposed onto NOAA 
AVHRR mosaic image of Antarctica, red box shows location of Lambert Glacier Basin. b) 
Zoom in of the largest BIAs in the Antarctic continent, located in the Lambert Glacier Basin. In 
both a) and b) wind-induced and melt induced BIAs have been mapped, along with potential 
BIA locations, where the occurrence of blue ice is uncertain. These figures have been adapted 
from Winther et al. [2001]. 
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transect offers a much cheaper alternative to traditional vertical ice core drilling, as large 

samples of old ice can be collected from remote, mountainous locations to measure trapped 

gases and gas isotopes [Sinisalo and Moore, 2010]. Their potential to indicate mass balance has 

also been recognised by Yu [2011], who found that BIAs can show the highest correlations 

between the rate of surface elevation change and the percent rate of change in blue ice extent.   

 

2.5.7 Flow instability �± surging glaciers 

Although all glaciers flow, the way in which they flow can vary, and as a result, some ice flows 

are more unstable than others. This is particularly evident in surging glaciers, where ice is 

subject to cyclical flow instabilities. Surging glaciers typically have long periods of quiescence, 

with thinning, melting and down wasting - with some forward motion, followed by short 

periods of rapid ice flow velocity where the glacier can advance dramatically. For example, 

when Brúarjökull in eastern Iceland surged in 1963, the glacier front advanced 8 km over its 

forefield, with a daily rate in excess of 100 m [Thorarinsson, 2011] (Figure 2.13). Although 

timings vary both regionally and by individual glacier, in Svalbard the quiescent phase of a 

surging glacier tends to exist for approximately 100 years, whilst the high-velocity period can 

last anywhere between a few months and 5 years [Hagen et al., 1993]. Although the precise 

mechanism of surging is still debated, most studies agree that changes in the glacier thermal 

regime are often responsible. For example, Sevestre et al. [2015] noticed that the subglacial 

hydrological regime and/or the strength and availability of subglacial till is often altered as a 

result of feedbacks associated with changes in the glacial thermal regime (these are often related 

to ice thickness fluctuations). These alterations can then have an important impact on ice flow, 

as changes in the subglacial hydrology and/or subglacial till properties can modify subglacial 

friction and the basal shear stress of the glacier, which will ultimately promote or suppress high 

velocity ice flow.  
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Figure 2.13. An example of surge events from Brúarjökull Glacier, Iceland [Kjær et al., 2008]. 
This figure shows that the present terrain surface is the cumulated result of at least four surge 
events: pre-1810, 1810, 1890 and 1964.   
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2.6 Ice Streaming 

Although this literature review has accounted for large scale ice sheet flow and local ice flow 

phenomena such as surging glaciers and compressive blue ice areas, faster stream flow has yet 

to be accounted for. In comparison to slow-moving ice sheet flow (which typically occurs 

within the dome areas of the interior ice sheet), faster stream flow, namely through ice streams, 

can move approximately 10-100 times faster than the adjacent non-streaming ice sheet 

[Bindschadler and Scambos, 1991; Whillans and van der Veen, 1993].  The Antarctic Ice Sheets 

are drained by a number of these fast flowing ice streams, which are typically hundreds of 

kilometres long and tens of kilometres wide [Bennett, 2003] (Figure 2.14). These ice streams 

were first recognised in the mid-20th century, where they were soon defined by Swithinbank 

�>���������@�� �D�V�� �³�S�D�U�W�� �R�I�� �D�Q�� �L�Q�O�D�Q�G�� �L�F�H�� �V�K�H�H�W�� �L�Q�� �Z�K�L�F�K�� �W�K�H�� �L�F�H�� �I�O�R�Z�V�� �P�R�U�H�� �U�D�S�L�G�O�\�� �W�K�D�Q���� �D�Q�G�� �Q�R�W��

�Q�H�F�H�V�V�D�U�L�O�\���L�Q���W�K�H���V�D�P�H���G�L�U�H�F�W�L�R�Q���D�V�����W�K�H���V�X�U�U�R�X�Q�G�L�Q�J���L�F�H�´�����7�K�L�V���G�H�I�L�Q�L�W�L�R�Q���S�R�L�Q�W�V���W�R���W�K�H���W�Z�R���P�D�L�Q��

features which define ice streams: (1) ice streams are surrounded by ice (if they were 

surrounded by rock, they would be considered outlet glaciers), and (2), the ice remains part of 

the inland ice sheet, and thus, it is not floating. It should also be noted here that the exact area at 

which the ice changes from sheet flow to streaming flow is referred to as the �³�R�Q�V�H�W�� �]�R�Q�H�´��

[Bindschadler et al., 2001]. 

Controls on the formation and location of ice streams followed their initial discovery; a 

review of creep instability in glaciers and ice sheets by Clarke et al. [1977] pulled together 

theories, models and field work studies to conclude that all ice sheets will inherently stream as a 

result of thermomechanical feedbacks. Subsequent numerical modelling experiments revealed 

that on a uniform bed the development and location of ice streams will tend towards uniformity, 

with a self-organised, radial flow regime [Payne and Dongelmans, 1997; Hulton and Mineter, 

2000; Boulton et al., 2003; Hindmarsh, 2009]. However, as observations of some contemporary 

ice sheets indicated non-regularity in ice streaming, it was soon noted that their exact location 

must be governed by a variety of factors such as topographic focussing, subglacial till 

deformation and basal hydrology [Winsborrow et al., 2010]. These factors are detailed below. 
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Figure 2.14. Satellite-derived surface ice flow velocities of the Antarctic Ice Sheets from 
MEaSUREs [Rignot et al., 2011], superimposed over MODIS satellite imagery [Haran et al., 
2006] and annotated to show dominant ice streams and their catchment areas.  
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2.6.1 Topographic focussing 

As most ice streams flow along troughs in the bed, basal topography was thought to be the 

obvious control governing ice stream location when research began in earnest during the mid-

20th century. Many studies realised that deep trough systems could support large ice masses and 

sustain considerable driving stresses, capable of impelling large ice fluxes into and through deep 

topographic channels. This was exemplified by McIntyre [1985] who recognised that ice 

velocities tended to increase when ice was channelised through troughs in the subglacial 

topography, although the study also recognised that larger driving stresses were required when 

troughs were narrow, as marginal drag along the valley walls provided resistance to flow. 

Although topographic focussing remains one of the main controls on ice streaming, Shabtaie 

and Bentley [1987], amongst others, quickly recognised that it was not a necessary condition for 

ice streaming and that subglacial till deformation could support ice streaming in areas with low 

topographic constraints.  

 

2.6.2 Subglacial till deformation  

Ice streams located in areas with little to no topographic constraints are often �W�H�U�P�H�G���µ�S�X�U�H���L�F�H��

�V�W�U�H�D�P�V�¶���>Bennett, 2003]. These ice streams are extremely rare, and at present can only be found 

along the Siple Coast region of Antarctica (Figure 2.14) where unconfined ice flows stream 

from the central dome of the WAIS towards the coast, draining ~40% of the WAIS [Price et al., 

2001]. Following the identification of a thick, saturated and possibly deforming till beneath the 

Whillans Ice Stream, in the Siple Coast in �W�K�H�����������¶�V, many studies such as those by Alley et al. 

[1986], Blankenship et al. [1986], Alley et al. [1987] and Blankenship et al. [1987] suggested 

that these unconfined �µ�S�X�U�H�� �L�F�H�� �V�W�U�H�D�P�V�¶�� �F�R�X�O�G�� �I�O�R�Z�� �D�V�� �D�� �U�H�V�X�O�W�� �R�I�� �V�X�E�J�O�D�F�L�D�O�� �W�L�O�O�� �G�H�I�R�U�P�D�W�L�R�Q. 

Field work investigations followed, where the inherent instability of pure ice streams was 

discovered. Borehole investigations of the Kamb Ice Stream in the Siple Coast revealed that a 

change in subglacial hydrological routing ~150 years ago caused the ice stream to slow down 

�F�R�Q�V�L�G�H�U�D�E�O�\���D�Q�G���H�Y�H�Q�W�X�D�O�O�\���µ�V�Z�L�W�F�K-�R�I�I�¶���D�V���W�K�H���G�H�E�Uis-rich basal ice began to freeze to the bed, 
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preventing streaming flow above [Retzlaff and Bentley, 1993]. GPS measurements across the 

Whillans Ice Stream have also revealed more recent changes in the Siple Coast. Here, Joughin 

et al. [2005] realised that the Whillans Ice Stream is currently decelerating at a rate of 0.6%/yr2, 

as a result of increasing till strength. An extrapolation of this deceleration trend suggests that the 

ice stream could stagnate in the next 100-200 years as the basal sediment approaches the driving 

stress of the ice stream, preventing significant horizontal-plane shearing in the ice [Joughin et 

al., 2005]. Combined, these studies have confirmed that ice streaming can be promoted, and 

indeed controlled by the deformation of a subglacial till layer (see section 2.5.3) 

[Anandakrishnan et al., 1998; Bell et al., 1998]. However, it should be re-enforced here that this 

mechanism of ice streaming is inherently unstable. The lack of topographic control in pure ice 

streams allows subglacial sediment, water and overlying ice to re-route over timescales of a few 

years or less [Smith et al., 2007], which can dramatically alter properties of the subglacial till, 

and therefore the flow of overlying ice [Alley et al., 1994; Tulaczyk et al., 2000].  

 

2.6.3 Basal hydrology 

Although the importance of water-saturated sediments at the base of an ice sheet have been 

explored in this chapter, it is also important to discuss the controls that water alone exerts on ice 

sheets and ice streams. Like water saturated sediments, the presence of basal water beneath an 

ice sheet can lower the basal strength of an ice mass to below the driving stress, causing stress 

to shift from the bed to the lateral shear margins. This typically increases basal slip and 

promotes faster ice flow. In order to appreciate ice flow fully  it is therefore critical to assess the 

hydrology of ice sheets and ice streams in Antarctica. 

 

Hydrological sources 

Effective lubrication of the glacier bed can arrive from surface, englacial and basal melt as well 

as groundwater sources (Figure 2.15). Like ice flow, the availability of water from each of these 

sources depends upon the climatic regime at the ice surface, the thermal regime of the ice, ice   
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Figure 2.15. Schematic ice sheet hydrology of a land-terminating outlet glacier (a) and a 
marine-terminating outlet glacier (b), both modified from Cuffey and Paterson [2010]. c) and d) 
represent plan views of channelised and distributed hydraulic systems (adapted from Benn and 
Evans [2010]).  
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flow dynamics and the nature of the bed [Sharp, 2005]. Although surface melt is the dominant 

source of water on high latitude, low elevation glaciers, these types of glaciers are largely 

limited in Antarctica to a few glaciers along the Antarctic Peninsula. As such, basal melting 

provides the majority of hydrological sources in Antarctica. This melt is generated as 

temperatures near the bed reach the pressure melting point, as a result of pressure from the thick 

overlying ice sheet. Frictional heating from fast flowing ice can also generate water within the 

glacial system, as a result of englacial melt (e.g. Jakobshavn Isbrae, Greenland [Harrington et 

al., 2015]). Although ground water inputs are poorly resolved in large ice sheets [Christofferson 

et al., 2014], they can also provide another important hydrological source for glacial systems, 

particularly when they relate to aquifers below the surface (e.g Trapridge Glacier in Canada 

[Flowers and Clarke, 2002] or the Vatnajökull ice cap in Iceland [Flowers et al., 2005]). 

 

Channelised and distributed drainage systems 

Once water has entered the glacial system it can be moved, retained or stored in response to 

water inputs, glacier geometry, thermal regimes and ice flow dynamics [Sharp, 2005; Chu, 

2013]. The movement of water through the glacial system is often facilitated by channelised or 

distributed subglacial drainage systems (Figure 2.15). Channelised systems, where water is 

confined to relatively narrow conduits are generally the most efficient pathways for water flow 

beneath or through ice, where well-formed channels permit rapid flow. In contrast, distributed 

systems, which often extend over large proportions of the bed, are generally less efficient. As 

these systems can change over time (as a function of water supply and temperature changes) 

these drainage systems can exert a strong control over glacier dynamics over both short and 

long time periods, by controlling the distribution of stored water and altering frictional 

resistance at the bed [Benn and Evans, 2010].  

The advancement of ice penetrating radar collection and processing has allowed 

numerous drainage systems to be identified beneath the Antarctic Ice Sheets. For example, King 

et al. [2004] provided seismic evidence for water flow through small channels in the subglacial 
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sedimentary substrate beneath the Rutford Ice Steam in West Antarctica; while more distributed 

flow has been recorded near the Gamburtsev Subglacial Mountains in East Antarctica. In the 

Gamburtsev Subglacial Mountains distributed networks dominate alpine overdeepenings 

(created during the early growth phase of the EAIS [Wolovick et al., 2013]), where water flows 

downhill or uphill depending on the ice surface gradient [Ashmore and Bingham, 2014]. This 

type of drainage imposes spatially variable flow velocities in the overlying ice, as the ice mass 

can flow rapidly over subglacial channels but not over surrounding bedrock, where friction is 

increased.  

 

Subglacial lakes 

In areas where water is available but drainage is prevented by ice, sediment or rock, water can 

be stored in supraglacial, englacial, subglacial or proglacial environments. In Antarctica, the 

storage of water in supraglacial, englacial and proglacial environments is limited as a function 

of low surface temperatures and, as such, water is more typically stored in subglacial lakes. 

These lakes are usually found in regions with low hydraulic gradients [Bindschadler and Choi, 

2007; Carter et al., 2007] which include ice divides, ice stream onset zones and prominent 

subglacial troughs [Benn and Evans�������������@�����6�L�Q�F�H���W�K�H�L�U���G�L�V�F�R�Y�H�U�\���L�Q���W�K�H�����������¶�V��by Robin et al. 

[1970], an ever increasing number of lakes have been identified beneath the Antarctic Ice Sheets 

using airborne radio echo sounding and satellite laser altimetry. Although the first continent-

wide inventory by Siegert et al. [2005a] recorded 145 lakes beneath the ice sheet, recent 

technological advances and new radar flight lines have allowed a further 234 lakes to be 

identified, bringing the latest total of subglacial lakes in Antarctica to 379 [Wright and Siegert, 

2012] (Figure 2.16). Of the initial 145 subglacial lakes identified by Siegert et al. [2005a], 124 

�Z�H�U�H���I�R�X�Q�G���W�R���E�H���µ�D�F�W�L�Y�H�¶���E�H�W�Z�H�H�Q�������������D�Q�G�������������>Smith et al., 2009]. This �µ�D�F�W�L�Y�L�W�\�¶���L�V���G�H�I�L�Q�H�G��

as any water accumulation and/or discharge over the measured time period. The high activity 

record suggests that the lakes are capable of providing or withdrawing water from the hydraulic  
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Figure 2.16. Map of subglacial lakes in Antarctica from Wright and Siegert [2012]. 
Colours/shapes indicate the type of investigations undertaken at each site: Black triangle = radio 
echo sounding, yellow triangle = seismic sounding, green triangle = gravitational field mapping, 
red circle = surface height change measurement, square = shape identified from ice surface 
feature. Vostok Subglacial Lake is shown with an outline. 
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systems that lubricate glacier flow, and, as such, it is highly likely that these subglacial 

reservoirs could force rapid temporal changes in glacier velocity [Smith et al., 2009].  

 With an estimated volume of 5400 km3 [Studinger et al., 2004], Lake Vostok in 

the centre of the EAIS is the largest subglacial lake to be identified. The lake represents a closed 

hydrological system where melting occurs at the northern end of the lake where the overlying 

ice is thicker and at the pressure melting point, whilst freezing dominates the southern end of 

the lake where the ice is thinner. However, as Smith et al. [2009] stress, most lakes in Antarctica 

represent much more open systems than that of Lake Vostok. For example, the water body 

volume of 1.37 km3 in subglacial Lake Ellsworth in West Antarctica [Woodward et al., 2010] is 

unlikely to be produced solely by local melt; instead it is more likely delivered via subglacial 

drainage [Vaughan et al., 2007]. Again, this promotes instabilities in ice flow as episodic 

drainage/fill events are known to create short-term speedups of both land-terminating portions 

of an ice sheet [Bartholomew et al., 2010; Palmer et al., 2011; Zwally et al., 2002] and fast-

moving marine terminating outlet glaciers [Andersen et al., 2011; Joughin et al., 2008; 

Shepherd et al., 2009]. This has important implications for the stability of ice sheets and ice 

streams over short to long time-periods. 

 

2.7 Debris in the glacial system 

As ice travels to the coast by slow-moving sheet flow or faster ice stream flow, 

sediment from subglacial or extraglacial sources can be picked up, entrained and transported. 

During entrainment and transportation, glaciers can shape the landscape by scouring broad areas  

clear of debris or through trough excavation. These features make glaciers among the most 

effective agents of erosion on Earth [Benn and Evans, 2010]. As debris can shape the subglacial 

landscape and alter ice flow this section of the literature review will focus on debris sources, 

entrainment mechanisms and debris transport processes through the glacial system, where 

particular emphasis will be placed on the relationship between debris and ice flow. 
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2.7.1 Debris sources 

Potential debris sources can be grouped into two categories: extraglacial or subglacial, although 

englacial transportation and mass movement processes can move debris from one end member 

to the other. Extraglacial debris is typically supplied by rockfalls, avalanches, and/or valley-side 

regolith, whilst subglacial debris is sourced from loose sediments or material eroded from the 

bed. Like all ice flow processes, the amount of available material is related to hydrology, glacial 

thermal regimes and ice flow dynamics, although in this case, geology also plays an important 

role as softer bedrock is more easily eroded than hard bedrock and cohesive sediments are much 

more difficult to pick up than loose sediments [Boulton, 1972]. It should also be noted here that 

past glaciations and glacial history can also play an important role in the availability of 

sediment, as marine ingression can supply sediment, whilst long periods of glaciation are known 

to exhaust sediment supplies [Bennett and Glasser, 2009].  

 

2.7.2 Debris entrainment mechanisms 

Once debris has been sourced, it can be incorporated into the ice flow by a variety of processes 

linked to internal ice deformation. This includes thrusting, folding, regelation (freeze-on), and 

crevasse-fil ling. As each of these processes is intrinsically linked to ice flow and glacial 

structures each of these entrainment mechanisms are detailed below and outlined in Figure 2.17. 

 

Thrusting 

Thrusts can develop under longitudinal compression where there is a thermal transition from 

warm to cold based ice (e.g. a downstream transition from a sliding bed to a frozen bed). In 

most ice flows this occurs when ice flows against a reverse bedrock slope, but in surging 

glaciers longitudinal compression can also develop as the compressive surge front moves down 

glacier [Sevestre et al., 2015] (see section 2.5.7). In each of these situations stress builds up until 

it is released by failure along a thrust plane which can either propagate to the ice surface, or  
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Figure 2.17. Possible debris entrainment mechanisms in ice sheets. Supraglacial debris can be 
incorporated into ice flows through successive snow deposition in the accumulation zone, 
through crevasse filling or supraglacial stream incision. Basal debris can be entrained through a 
variety of processes linked to internal ice deformation. This includes folding, thrusting, freeze-
on and crevasse-filling.  
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terminate within the ice mass as a blind thrust (Figure 2.17). Sediment can be incorporated in 

the initial fault event or injected through brine infiltration at a later date [Hambrey and Glasser, 

2011]. 

 

Folding 

When ice passes through local zones of compression as the glacier flows against obstructions in 

the bed or valley walls principal stresses near to the horizontal can cause the ice to fold, 

�S�U�R�G�X�F�L�Q�J�� �³�R�S�H�Q-�I�R�O�G�V�´�� �Z�L�W�K�� �J�H�Q�W�O�\�� �V�O�R�S�L�Q�J�� �O�L�P�E�V�� �L�Q�� �O�R�Z�� �V�W�U�H�V�V�� �U�H�J�L�P�H�V���� �D�Q�G�� �³�L�V�R�F�O�L�Q�D�O�� �I�R�O�G�V�´��

with parallel limbs in areas subject to high longitudinal compression (Figure 2.18). It has been 

suggested that this can induce folding in soft subglacial and basal sediments of the same 

geometry (although this has not yet been observed) [Hambrey and Glasser, 2011]. The amount 

of folding is subject to several geometric factors: the tightness of the fold, the orientation of the 

axial plane relative to the horizontal and the thickness of the fold.  

 

Regelation (freeze-on) 

Net freezing of melt-water can occur when ice moves from warm to cold based, making the 

pore-water pressure in the subglacial sediment less than the ice pressure [Weertman, 1961]. 

Although this mechanism requires water to re-freeze around all entrained clasts, and thus, the 

rate of freeze-on will only decrease with increasing debris thickness [Boulton, 1972], Alley et al. 

[1997] suggest that regelation can allow debris sources to be lifted to relatively high levels of 

englacial transport, several tens of metres above the bed. 

 

Crevasse filling 

Crevasse filling is common in areas of complex stress regimes, where ice undergoes both 

extensional and compressional flow (typical of surging glaciers �± see section 2.5.7). When the 

basal crevasse opens, saturated and deformable till is squeezed under pressure into the 

crevasses, �F�U�H�D�W�L�Q�J���µ�F�U�H�Y�D�V�V�H���V�T�X�H�H�]�H�V�¶���>Woodward et al., 2003a]. This allows sediment to enter  
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Figure 2.18. Englacial layer folding terminology, a) compression folding, b) orientation of axial 
plane and c) thickness of folds (modified from Fossen [2010]).  
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the glacial system, or even emerge supraglacially during full depth bottom-up crevassing, 

although Rea and Evans [2011] stress that full-depth bottom-up crevassing is rare, and only 

occurs when ice thicknesses are in in excess of ~200 m, with basal water pressures in excess of 

80-90% flotation. 

 

2.7.3 Controls on debris entrainment 

Each of the debris entrainment mechanisms detailed above can only occur under specific 

circumstances, which broadly rely on sediment availability, ice flow and ice temperature. Each 

of these controls has been detailed below.  

 

Sediment availability 

First of all, debris can only be entrained in ice if sediment is available for entrainment. This is a 

complex control, as the location and amount of available debris is a function of glacial history 

(e.g. trough excavation and/or marine ingression), basal geology, basal topography, local 

erosion rates and ice flow velocity [Dunning et al., 2015]. If sediment is made available through 

the erosion or deposition of clasts, it could be incorporated into the ice flow if conditions allow, 

though it should be noted that this entrainment will inevitably cease once the sediment source is 

exhausted.  

 

Ice flow 

Once sediment is made available, the likelihood of debris entrainment is then a function of ice 

flow [Jennings et al., 2014], where the stress regime of a glacier can limit or permit debris 

entrainment through thrusting, crevasse formation and folding. Again, these types of 

entrainment mechanisms will only incorporate large volumes of sediment if they migrate over 

time and/or space.   
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Ice temperature  

Ice temperature is controlled by a number of factors including the local weather and climate, ice 

thickness, ice velocity and geothermal heat flux [Sugden, 1977]. As these factors vary over 

space and time, ice temperature can have a variable control on debris entrainment. Although 

debris excavation occurs when ice moves from warm to cold based [Boulton, 1972] (figure 

2.19), spatial and temporal changes in the thermal regime will inevitably alter the precise 

location of debris entrainment. 

 

2.7.4 Debris transport through the glacial system 

Once incorporated, debris can be moved through the glacial system supraglacially, englacially 

and/or subglacially [Boulton, 1993] (Figure 2.20). As initial transportation modes are largely 

controlled by source location and glacial flow characteristics, a distinction is sometimes made 

between high-level (passive transport) where the material remains in the supraglacial or 

englacial zones and low-level (active) transport where debris is brought into contact with the 

bed. High-level transport is frequently encountered when debris is made available at the ice 

surface through rockfall activity: in the accumulation area, rockfall and/or avalanche material is 

often buried by subsequent snow and firn deposits, which force clasts to take an englacial 

transport path [Berthling et al., 2000]. Here debris transport follows the flow lines of the ice 

from the accumulation area through to the ablation zone [Degenhardt and Giardino, 2003; 

Monnier et al., 2008; Degenhardt, 2009]. However, high-level transport can also occur when 

debris falls onto the ice surface close to the equilibrium line, where limited snow accumulation 

allows debris to follow a more shallow englacial path, where the debris will likely emerge a 

short distance down glacier [Hambrey and Glasser, 2011] (Figure 2.19). Finally, when debris 

falls in the ablation zone, it is often draped over the glacier surface and passively transported 

down glacier (as limited snowfall makes it unlikely for clasts to be fully incorporated into the 

ice flow [Knight, 1999]).  
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Figure 2.19. Schematic cross-section through an ice sheet showing the influence of the basal 
thermal regime on processes of glacial erosion. This figure has been modified from Bennett and 
Glasser [2009]. 
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Figure 2.20. Debris transport pathways through a typical valley glacier. Two transport 
pathways can be identified 1) a high-level pathway in which the debris does not come into 
contact with the bed and 2) a low-level pathway in which the debris is in contact with the bed. 
This figure has been modified from Boulton [1993].   
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As low level transport is defined as transport where debris is brought into contact with 

the bed, sediment which reaches the bed is typically sourced near the glacial bed or high up in 

the accumulation zone, where it takes time for the debris to be brought to the bed by ice flow. 

Once debris comes into contact with bedrock it often becomes eroded and scratched, producing 

rounded clasts with several directions of striations [Boulton, 1978] (Table 2.1). However, when 

basal debris is embedded in lodgement till, striations tend to develop parallel to glacier flow, 

where they often exhibit truncated distal extremities (rather like a roche mountonnée) [Boulton, 

1978] (Table 2.1). Although each of these examples show that the location of entrainment is a 

key factor for debris transportation, the speed of conveyance and path of transport can again 

depend on internal and external factors such as hydrology, ice dynamics (extending vs 

compressive flow), thermal regimes and basal topography.  

 

2.7.5 Significance of debris in the glacial system 

Although this literature review has already demonstrated the importance of basal topography 

and sediment availability in terms of ice flow and ice streaming, the significance of quantifying 

debris sources and determining debris incorporation still needs to be addressed. In Antarctica it 

has been very difficult to quantify supraglacial debris accumulations, as the primary source - 

rockfall deposits are relatively short-lived on glacial surfaces (as snow accumulation quickly 

buries deposits [Berthling et al., 2000] �± see section 2.7.4). However, a recent study of rock 

avalanche deposit sequestration by Dunning et al. [2015] has suggested the possibility of 

detecting landslide deposits englacially, with the use of ice penetrating radar. As rockfall 

deposits could increase in the future (as ice sheets respond to feedbacks associated with global 

warming and de-stabilise exposed rock headwalls and valley sides [Deline et al., 2014]) ice 

penetrating radar surveys open up new possibilities for detecting englacial debris deposits and 

improving magnitude/frequency curves for rockfall events in Antarctica. These methods can 

also be applied to detect englacial debris sources, and debris entrainment mechanisms at depth, 

where sources and processes of debris entrainment can provide insight into the local thermal, 
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Transport zone 
 

Boulder shape 
 

Boulder character 
 

Texture 

  

Supraglacial 
 

Angular 
 

No striations 
 

High level transport type 

Supraglacial or 
englacial 

Sub-rounded to 
rounded 

Several striae 
directions 

Tractional type (often strong 
secondary modification 

Basal or 
glacier bed 

Rounded Parallel striae, distal 
truncation 

Tractional type (might have 
secondary modification) 

Glacier bed Sub-rounded to 
rounded 

Often water warn Tractional type (often strong 
secondary modification) 
 

 

Table 2.1. Boulder shape, character and texture as a function of glacial transportation. Table 
adapted from Boulton [1978]. 
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hydrological and/or stress regime [Boulton, 1972]. This is particularly important in Antarctica 

where in-situ measurements of ice temperature, englacial stress and hydraulic regimes are 

limited as a function of accessibility and cost. On a longer timescale, englacial debris can also 

have an important influence on the nature of the subglacial topography and ice sheet conditions 

[Harbor et al., 1998]. As glacially eroded and entrained sediment can help to wear down valley 

side walls over time (Figure 2.21), debris accumulations can eventually alter ice flow directions 

[Harbor et al., [1988], ice velocity [Bell et al., 1998] and debris transport pathways, where ice 

flow can potentially transport large quantities of sediment and essential nutrients from 

continental sources to Southern Ocean deposition [Death et al., 2014; Hawkings et al., 2014].  

 

2.8 Detecting past and present ice flow regimes 

Although this literature review has highlighted examples of ice flow regimes, the precise 

mechanisms for detecting ice flow and indeed changes in ice flow have yet to be fully 

addressed. The principal method for detecting englacial and subglacial features in large ice 

masses is ice penetrating radar, which can be split into two distinct methods; radio-echo 

sounding (RES) and ground penetrating radar (GPR) (figure 2.22), which operate at different 

scales and frequencies. Both methods require a transmitter that emits electromagnetic waves and 

�D�� �U�H�F�H�L�Y�H�U�� �W�K�D�W�� �U�H�F�R�U�G�V�� �U�H�I�O�H�F�W�L�R�Q�V�� ���R�U�� �µ�H�F�K�R�H�V�¶���� �I�U�R�P�� �D�Q�\�� �V�X�U�I�D�F�H�V�� �Z�K�H�U�H�� �W�K�H�U�H�� �L�V�� �D�� �F�R�Q�W�U�D�V�W�� �L�Q��

dielectric properties [Bingham and Siegert, 2007]. Over ice sheets and ice caps, the most 

common reflectors constitute the ice surface, the basal interface, and englacial (internal) layers; 

although additional features such as subglacial lakes, subsurface crevasses, thermal boundaries 

and debris can also be discerned [Bingham and Siegert, 2007]. As basal conditions have been 

found to exert a strong control on ice flow, hydrology and debris availability, methods to detect 

basal conditions will be examined before systems for detecting and analysing internal ice sheet 

stratigraphy are explored. 
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Figure 2.21. A numerical model of landform development by glacial erosion through time. 
Figure modified from Harbor et al. [1988].  
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Figure 2.22. Schematic diagram from Bingham et al. [2010] showing methods of radar 
acquisition over ice from airborne and over snow platforms. Both systems require a transmitter 
(tx) that emits electromagnetic waves and a receiver (rx) that records reflections in the 
subsurface. 
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2.8.1 Detecting basal features 

Developed in the 1960s as a method for locating the bed beneath ice sheets in order to constrain 

subglacial topography for the determination of ice sheet thickness, RES remains the principal 

method for investigating subsurface properties of the polar ice sheets and ice caps. One of the 

most obvious subsurface features is the bed, as sediment and/or rock provides a highly reflective 

interface which is easily discernible from even the thickest overlying ice sheets in radar returns. 

Although RES has been widely employed in Antarctica since its invention, the first continent-

wide account of subglacial topography in Antarctica was provided in 2001 by the Bedmap 

consortium [Lythe et al., 2001]. This unique dataset, having recently been updated to form 

Bedmap2 [Fretwell et al., 2013], has revealed the spatial variability of basal conditions in 

Antarctica, by mapping out numerous subglacial mountain ranges and deep trough systems. 

By employing more detailed analysis of specific RES lines, a number of studies have 

also investigated regional basal features which have included subglacial sediments, basal water 

and subglacial lakes, where each new finding has helped to improve the understanding of flow 

mechanisms, discussed in earlier sections of this literature review. Repeat surveys have also 

been employed to analyse temporal changes in the bed, where a number of studies, e.g., 

Vaughan et al. [2003], Smith, [2006] and Murray et al. [2008] have indicated rapid change over 

measured time periods. For example, repeat imaging of the bed of the Rutford Ice Stream has 

revealed rapidly changing bed forms, probably in the form of mega-scale glacial lineations or 

drumlins [Smith et al., 2007; King et al., 2007, 2009, 2016].  

 

2.8.2 Analysing internal stratigraphy 

In order to determine past and present ice flow regimes in Antarctica it is necessary to analyse 

the internal stratigraphy within the thick EAIS and WAIS. Primary stratification accounts for 

the majority of internal features within the upper reaches of an ice sheet. This type of 

stratification develops when surface snow accumulations are compacted and buried by 

subsequent snowfall, eventually producing stratigraphic layers within the ice sheet. As each 
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layer has a unique dielectric property, geophysical methods can be used to detect and trace the 

individual layers, or more commonly, packets of layers within the ice sheet (e.g. Figure 2.22), 

where their shape and form can reveal information about past and present ice flow. However, 

this type of undisturbed primary stratification is only found in slow moving sheet flow, typically 

in upland areas of the ice sheet where snow accumulation dominates. Here, regional GPR and 

RES can often detect the conformable, isochronal layers (i.e. layers of the same age) [Fujita et 

al., 1999; Parrenin and Hindmarsh, 2007] for several tens of km [Siegert, 2003; Siegert and 

Payne, 2004; Cavitte et al., 2013], where the relative thickness of each layer can be used to infer 

past accumulation rates [Fahnestock et al., 2001; Woodward and King, 2009] or to constrain 

layer ages from ice cores [Waddington et al., 2007]. 

As the ice flow changes from sheet flow to more channelised streaming flow, this 

primary stratification can become buckled and disrupted as the ice adapts to changes in the local 

strain rate. As previously discussed in sections 2.5 and 2.6, these changes frequently occur in ice 

as a result of fluctuations in the basal topography, basal flow conditions, basal melting, surface 

accumulation and/or converging or diverging ice flow [Siegert et al., 2004]. By examining the 

exact shape and form of buckles and disrupted layers along with their spatial context it is 

therefore possible to infer both past and present ice flow regimes. This technique has helped to 

reveal temporal changes in the location and velocity of ice streams throughout Greenland and 

Antarctica. For example, Siegert et al. [2013] recently detected ice deformed by former 

enhanced flow beneath un-deformed, very slow flowing ice in the Weddell Sea sector of West 

Antarctica by airborne RES (Figure 2.23). Through detailed analysis, these findings reveal an 

adjustment to the flow path of the Institute Ice Stream ~4000 �± ~400 years ago (Figure 2.23).   

Despite the glaciological insights that are possible from the study of ice penetrating 

radar returns, their use has been largely limited because of the lack of data availability [Siegert 

et al., 2005b]. This review highlights the need for more geophysical surveys, in order to detect 

and understand ice flow mechanisms, past ice sheet conditions and overall ice sheet stability. 

Outputs are critical for the development and validation of numerical and predictive ice sheet  
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Figure 2.23. Schematic description of ice sheet change in the Institute and Möller Ice Streams 
(IIS and MIS), West Antarctica [Siegert et al., 2013]. (a) The current glaciological situation, 
with respect to the Bungenstock Ice Rise (BIR) with ice flow stripes from the BIR noted. (b) 
Proposed ice flow during the Last Glacial Maximum (LGM), when northward ice flow from the 
WAIS interior cross-cuts the present day trunk of the IIS. (c) Mid Holocene, post-LGM 
situation, where the IIS becomes active to the south of the BIR. (d) Later Holocene ice 
configuration, in which ice over the BIR becomes stagnant, thus leading to the present day ice 
sheet configurations.  
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models (e.g. Conway et al. [1999]; Siegert et al. [2003]; Martin et al. [2006], [2009]; 

Waddington et al. [2007]; Eisen [2008]; Sime et al. [2011]). 

 

2.9 Summary  

Recent changes in the global climate have heightened concerns for rapid irreversible ice sheet 

loss, with resultant implications for atmospheric circulation patterns [Roe and Lindzen, 2001], 

ocean overturning [Hemming, 2004] and global sea level. As Antarctica stores ~70% of the 

entire world�¶s fresh water [Bennett and Glasser, 2009], making it capable of raising sea levels 

by ~57 m should the ice sheet melt completely [Lythe et al., 2001], it is critical to understand 

both past and present ice-flow dynamics in Antarctica, as even a modest change in ice-sheet 

volume will strongly affect future sea level and freshwater flux to the oceans [Lemke et al., 

2007]. 

This literature review has highlighted the importance of understanding ice flow in 

Antarctica, particularly in areas which are deemed to be unstable, or vulnerable to change. 

These areas include, but are not limited to ice sheets resting on bedrock well below sea level and 

ice streams which flow over water or thick subglacial sediments, where ice flow is acutely 

sensitive to a number of internal and external factors. Although some of these factors can be 

triggered, and to some extent paced by external forcing (atmospheric and oceanic), this 

literature review demonstrates that each ice stream is unique and that a multitude of factors can  

modulate their location and flow regime, as well as the precise rate and timings of any change in 

ice flow dynamics [Livingstone et al., 2012]. 

As a result of this literature review, this thesis will use ice penetrating radar to address 

the controls on ice flow and internal stratigraphy in the upper IIS catchment, in the climate 

sensitive WAIS. The geological and glaciological features of this study site, in and around 

Horseshoe Valley in the Ellsworth Mountains will be discussed in Chapter 3, while Chapter 4 

will introduce methodologies used in this thesis. Chapter 5 will investigate the internal 

stratigraphy of Patriot Hills BIA, Chapter 6 will examine the complex basal topography and ice 
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sheet flows of the Ellsworth subglacial highlands using airborne RES and Chapter 7 will detail 

debris sources and entrainment mechanisms in Horseshoe Valley. Analysis of katabatic winds 

and other controls on BIAs will  be then be discussed in Chapter 8, in order to investigate past 

and present flow regimes. All of this work will be combined to create a site wide discussion 

chapter (Chapter 9) as well as a conclusion chapter (Chapter 10) where limitations of the study 

will be discussed, along with suggestions for future work.  
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Chapter 3 

Study site  

 

3.1 Institute Ice Stream 

Ice streams, accounting for approximately 90% of the total discharge of the WAIS, retain 

evidence of former flow conditions that make them suitable for investigating past and present 

ice flow conditions (see chapter 2). One of the largest ice stream basins in West Antarctica is the 

Institute Ice Steam (IIS) which captures a total drainage area of 151,000 km2, where ice flow is 

drained from the central WAIS dome to its release at the Filchner-Ronne Ice Shelf (FRIS) in the 

Weddell Sea (Figure 3.1). The IIS catchment borders the southern lobe of the Pine Island 

Glacier drainage system, the southern catchment of the Rutford Ice Stream, the northern extent 

of the Möller Ice Stream (MIS) and the uppermost part of the Kamb Ice Stream basin. In the 

upper catchment two distinct flow units are recognised; one is ice that comes from the broad 

catchment that adjoins the Siple Coast ice streams, and the second, which is the main focus of 

this thesis, comprises a series of tributaries around and west of the Ellsworth Mountains (Figure 

3.1).  

 As 60% of the IIS catchment lies well below sea level (Figure 3.1c, 3.1d), where recent 

analyses of airborne geophysical surveys revealed that the basal topography is characterised by 

steep reverse bed slopes, deep trough systems and low basal roughness, a number of studies 

(e.g. Ross et al. [2012]; Wright et al. [2014] and Siegert et al. [2016]) have recently voiced 

concern for potential widespread instability in this sector of West Antarctica. These fears were 

recently compounded in a study by Ross et al. [2014] who recognised that there is little small-

�V�F�D�O�H�� �W�R�S�R�J�U�D�S�K�\�� �W�K�D�W�� �F�R�X�O�G�� �D�F�W�� �D�V�� �D�� �S�L�Q�Q�L�Q�J�� �S�R�L�Q�W�� �W�R�� �G�H�O�D�\�� �D�Q�\�� �I�X�W�X�U�H�� �U�H�W�U�H�D�W�� �R�I�� �W�K�H�� �,�,�6�¶�V��

grounding line. As investigations by Hein et al. [2011, 2016a] and Golledge et al. [2013] have 

discovered that the FRIS grounding line comprises an area sensitive to changes in ice thickness 

in the Weddell Sea sector of Antarctica, it is more than possible that the grounding line could 

retreat in the future, particularly if forecasted climate change scenarios come to fruition (see 

chapter 2). Ross et al. [2014] suggested that even a slight retreat of the grounding line could 
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Figure 3.1. a) MODIS and LIMA mosaic of Antarctica with prominent geographical features 
labelled, thin black lines indicate 500 m elevation contours, b) Satellite-derived surface ice flow 
velocities from MEaSUREs [Rignot et al., 2011a], superimposed over MODIS satellite imagery 
[Haran et al., 2006] and annotated to show dominant ice streams and their catchment areas, c) 
map of subglacial topography, thin black lines indicate 0 m elevation, d) subglacial topography 
map with bedrock shading to show areas above present sea-level (blue). 
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quickly transform the IIS tributaries into discrete ice stream outlets, capable of generating 

enhanced ice flow from the main WAIS divide. The study stressed that this enhanced flow 

could increase the potential for more widespread and possibly irreversible ice sheet drawdown 

[Ross et al., 2014]. As large proportions of the upper IIS catchment flow above subglacial beds 

which are often situated well below sea level (particularly in areas around the Ellsworth 

Mountains) it is critical to better understand the past and present ice flow regime in this region.  

 

3.2 Ellsworth Mountains 

The Ellsworth Mountains comprise a 350 km long and 80 km wide isolated mountain block, 

built of a conformable sequence of folded Cambrian to Permian sediments, which can be 

differentiated into two distinct units; the Sentinel and Heritage Range (Figure 3.2). The Sentinel 

range is composed of younger quartzites which support high mountainous peaks, like Mount 

Vinson, which stands at 4892 m a.s.l. (making it the highest point in Antarctica) (Figure 3.2), 

whilst the Heritage range, to the south-west is defined by a number of lower elevation ridges 

and peaks, comprised of older limestone and quartzite conglomerates [Webers et al., 1992]. 

Although geologically distinct, both ranges are defined by a series of high amplitude basement 

faults and geological folds running north-west to south-east [Jordan et al., 2013] which define 

tectonically-controlled sub-basins which are often more than 300 km long and up to ~2500 m 

deep.  

 

3.2.1 Glaciological history of the Ellsworth Mountains 

Fluvial regimes, alpine glaciation and wide-spread ice sheet ingress have helped to shape the 

unique topography of the Ellsworth Mountains in West Antarctica over millions of years. Many 

pioneering studies, like that by Rutford [1972] suggested that rivers would have initially 

sculpted the dendritic pattern of the valleys and rolling hills (which are preserved around Mt. 

Vinson in the Sentinel Range), whilst alpine glacier systems, most likely associated with a  
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predominantly maritime climate [Ross et al., 2014] would have formed the arêtes, horns and 

sharp spurs that dominate the lower Heritage Range [Denton et al., 1992].  

Although recent cosmogenic nuclide dating of bedrock and boulders along the southern 

Heritage Range has revealed continuous ice sheet conditions for at least 1.4 Ma, Hein et al. 

[2016a] stress that there have been distinct fluctuations in ice sheet thickness in the Weddell Sea 

sector of Antarctica during this time. For example, it is possible that a regional ice sheet could 

have dominated the highland areas in and around the Ellsworth Mountains during the 

Pleistocene, where oscillations in ice thickness would have occurred in response to Pleistocene 

sea level fluctuations [Hein et al., 2016a]. A conceptual reconstruction of this time period, 

focussed on Marble Hills in the Southern Heritage Range (Figure 3.2) can be seen in Figure 3.3. 

This figure also details probable ice sheet conditions during the early Last Glacial Maximum 

(LGM) - a period conventionally defined as the most recent interval in history when global ice 

sheets reached their maximum integrated volume. Clark et al. [2009] suggest that this would 

have occurred �V�R�P�H�W�L�P�H�� �E�H�W�Z�H�H�Q�� ������ �D�Q�G�� �����×�N�D��ago in West Antarctica. A number of studies 

(e.g. Bentley et al. [2010]; Fogwill et al. [2012]; Hein et al. [2016a, 2016b]) have provided 

evidence for a long-term trajectory of ice surface lowering in and around the Southern Heritage 

Range since the LGM. This overall thinning trend (interspersed with slight increases in ice sheet 

thickness) is expected to have occurred in response to quaternary glacial-interglacial climate and 

sea level cycles, the most recent of which is expected to have occurred sometime between 6.5 

and 3.5 ka ago [Hein et al., 2016b]. During this time period it is anticipated that marine 

downdraw would have instigated a rapid pulse of ice sheet thinning in the Weddell Sea sector of 

West Antarctica, causing the ice surface in Horseshoe Valley in the southern Heritage Range to 

drop by ~400 m, to almost present day conditions [Hein et al., 2016b]. These conditions are 

simulated in Figure 3.3c.  

Dynamic changes in the ice sheet are expected to have occurred both before, during and 

after this rapid pulse of thinning, where it is expected that the ice flow regime ~3.5 ka ago 

would have been different to that of today [Larter et al., 2012]. Parallel surface lineations on the  
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Figure 3.3. A conceptual reconstruction of ice sheet configurations surrounding Marble Hills in 
the southern Heritage Range, a) shows features that would accompany local glaciation (which 
could have occurred during the Pleistocene), b) details past maximum blue-ice relationships and 
c) shows the present minimum. This figure has been adapted from Hein et al. [2016a].  
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Bungenstock Ice Rise (BIR), running at a significantly different angle to modern ice flow have 

provided the first potential evidence to support these assertions [Siegert et al., 2013] (See 

Chapter 2, section 2.8.2). Assuming that the lineations represent flow stripes, they could 

epitomise former IIS drainage conditions approximately 0.4 - 4 ka ago, where their orientation 

suggests that ice flow used to stream over the region now covered by the BIR [Siegert et al., 

2013]. These findings imply that the prevailing flow regime of the IIS could be very recent, and 

that local ice stream dynamics have been subjected to significant alterations since the LGM.  

Focussing on much more recent periods of time, since the exploration of Antarctica 

through ground and satellite observations, a variety of measurements have determined that the 

ice elevation in and around the southern Heritage Range is in a near steady state (e.g. Casassa et 

al. [2004]). However, ablation stake surveys of Horseshoe Glacier, in Horseshoe Valley 

(southern Heritage Range) since 2000 have recognised a slight but significant ice elevation 

increase. This ice thickening is likely to be a function of the sheltered nature of the valley, 

which is fed by sustained accumulation rates of approximately 0.2 �± 0.3 m w.e. a-1 [Genthon 

and Braun, 1995] (where precipitation is delivered by frontal systems originating in the 

Weddell Sea [Wendt et al., 2009]) as well as low mean annual temperatures, which are 

estimated to be approximately �í28°C [Dahe et al., 1994]). 

 

3.3 Ice flows in and around the Heritage Range 

Three distinct sub-basins have been detected by airborne RES in and around the Heritage Range 

(Figure 3.4b, 3.4c). These deep trough systems have been named Horseshoe Valley Trough 

���D�I�W�H�U�� �³�+�R�U�V�H�V�K�R�H�� �9�D�O�O�H�\�´���� �D�W�� �L�W�V�� �K�H�D�G���� �,�Q�G�H�S�H�Q�G�H�Q�F�H�� �7�U�R�X�J�K���� �D�I�W�H�U�� �W�K�H�� �,�Q�G�H�S�H�Q�G�H�Q�F�H�� �+�L�O�O�V��

which delimit the northern edge of the trough and the Ellsworth Trough, which is described in 

detail by Ross et al. [2014] amongst others, following the discovery of subglacial Lake 

Ellsworth in 1966 (see section 2.6). Each of these deep trough systems support thick ice flows 

which are separated by subglacial mountain ranges and nunataks (Figure 3.4c), which allows   
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Figure 3.4. Satellite imagery, flow speed and bed elevation of the Institute Ice Stream in the 
Weddell Sea Sector of the WAIS. Note that the white line indicates the ASAID grounding line 
[Bindschadler et al., 2011]. (a) MODIS and LIMA mosaic, with prominent geographical 
features labelled (b) Satellite-derived surface ice flow velocities from MEaSUREs [Rignot et al., 
2011a] superimposed over MODIS satellite imagery [Haran et al., 2006] and annotated to show 
dominant ice streams, the Bungenstock Ice Rise, Horseshoe Valley Trough (HVT), 
Independence Trough and Ellsworth Trough. (c) Bed elevation, derived from Bedmap2 
[Fretwell et al., 2013]. 
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interior ice to flow through discrete channels towards the main trunk of the IIS, and ultimately 

the FRIS in the Weddell Sea (Figure 3.4a). 

 

3.4 Horseshoe Valley 

Horseshoe Valley in the Southern Heritage Range �������ƒ�������¶�6���� �����ƒ�������¶�:�� is situated 

approximately 300 km from the central WAIS dome and ~45 km from the local grounding line 

of the FRIS at Hercules Inlet. Ice flows in and around Horseshoe Valley therefore comprise an 

ideal location to investigate the past and present flow regime of the Weddell Sea sector of the 

WAIS, in the upper IIS catchment. Horseshoe Valley itself is clearly visible in satellite imagery, 

where a number of mountains peaks and ridges form a distinct horseshoe shape which 

disconnects the valley ice flow from other glaciers, like the northward flowing Union Glacier 

(Figure 3.5). To the north-east the valley is delineated by the Enterprise and Douglas Peaks, 

whilst the Liberty Marble, Independence and Patriot Hills delimit Horseshoe Valley to the 

south-west (Figure 3.5). Recent geomorphological analysis and cosmogenic nuclide dating of 

these massifs suggest that Horseshoe Valley ice flow has remained geologically isolated from 

the main WAIS, since at least the last glacial cycle [Fogwill et al., 2012; Golledge et al., 2012; 

Hein et al., 2016a]. This suggests that the ice in Horseshoe Valley is local in origin, where 

Horseshoe Glacier is fed by in-situ accumulation and ice flow from three main outlet glaciers 

which pass the Liberty, Marble and Independence Hills [Genthon and Braun, 1995]. These 

glaciers help to drain the inland ice sheet by deflecting flow towards the local FRIS grounding 

line at Hercules Inlet (Figure 3.4a). A brief description of the Marble, Independence and Patriot 

Hills has been provided below.  

 

3.5 Marble, Independence and Patriot Hills  

The Marble, Independence and Patriot Hills (Figure 3.5) comprise a number of sharp peaks and 

ridge systems, largely composed of Cambrian limestones that outcrop in grey well-bedded 

limestones which contain massive marble-like limestones [Spörli and Craddock, 1992]. 
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Figure 3.5. MODIS and LIMA mosaic detailing a) Horseshoe Glacier, which is confined by a 
number of mountain chains which define Horseshoe Valley, and b) a detailed zoom in of the 
Marble, Independence and Patriot Hills, as well as Morris Cliffs, where large BIAs are recorded 
on the leeward foreground of each massif.  
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Conglomerates underlie these limestone systems in Patriot Hills, whilst local limestones, exotic 

quartzite and basic igneous erratics scatter the surface of the three massifs, at a variety of 

elevations. Some of these erratics were investigated by Denton et al. [1992] during a field 

campaign of Horseshoe Valley, where geological analysis revealed that several of the more 

exotic igneous erratics would have derived from the Scholt Peaks, an area some 70 km to the 

north-north-west of the massifs. Of the three massifs, Marble Hills is the tallest, where the 

summit of Mount Fordell reaches an elevation of 1670 m above present day sea level. Similarly 

high peaks are also recorded along Independence Hills, where the tallest peak, Mount Simmons 

stands at an altitude of 1590 m a.s.l. (Figure 3.5). Morris cliffs is situated between these two 

ranges, where the steep cliff face separates the high elevation central WAIS flow from the lower 

elevation Horseshoe Valley ice flow. At the extreme end of Horseshoe Valley and orientated at 

an angle to the largely linear Liberty, Marble and Independence Hills is Patriot Hills, where 

ridges reach a maximum elevation of 1246 m a.s.l. These ridge systems are interspersed with a 

number of bedrock spurs, which constrain large embayments. 

 

3.6 Blue Ice Areas in and around Horseshoe Valley 

Although the main ice flow direction in the upper IIS catchment in and around the Ellsworth 

Mountains is towards the FRIS, some ice flows to the surface to counter-act negative mass 

balance, caused by katabatic wind scour and enhanced sublimation of the leeward slopes of 

nunataks which define Horseshoe Valley (see Chapter 2, section 2.5.5 for a full discussion of 

BIA formation). These strong katabatic winds (estimated to be >30ms�±1 in Horseshoe Valley 

[Carrasco et al., 2000]) have shaped the local topography of the southern Heritage Range by 

moving inland snow accumulations to sheltered zones on the stoss sides of the Patriot, 

Independence, Marble and Liberty Hills, and eroding the leeward slopes of the four massifs. 

Although prolonged katabatic wind scour has enabled large BIAs to form in front of the massifs 

[Hein et al., 2016a] (Figure 3.5), the exact shape and size of each BIA varies in accordance with 

local meteorological and ice flow conditions.  
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3.6.1 Patriot Hills Blue Ice Area 

The most widely used and studied BIA in Horseshoe Valley is located in front of Patriot Hills, 

where the expansive BIA, comprising an area of ~12 km2 (Figure 3.5), has been accessed as an 

aircraft runway since 1987. For 25 years, Adventure Network International (later re-branded as 

Antarctic Logistics and Expeditions) used the ice runway to support commercial and scientific 

operations, before relocating to nearby Union Glacier (some 60 km to the north-west) a couple 

of years ago. However, since 1995 Patriot Hills BIA has also been used to �V�X�S�S�R�U�W�� �&�K�L�O�H�¶�V��

Antarctic program, where ongoing work has documented the extent of the BIA annually (e.g. 

Wendt et al. [2009] and Rivera et al. [2014]). Figure 3.6 shows how these studies have not 

recorded any significant change in the areal extent of Patriot Hills BIA since measurements 

began in 1996 - although interannual variability, most likely connected to prevailing 

meteorological conditions has been recorded [Wendt et al., 2009; Rivera et al., 2014]. This 

relative stability encouraged Turney et al. [2013] to extract a horizontal climate sequence from 

Patriot Hills BIA in 2012, where deuterium isotope analysis and cross-correlation revealed a 

30,000 year record of climate history. On the whole, these investigations found similar results to 

more traditional ice core surveys from the continental ice sheet, although two distinct periods of 

change were noted at ~ ~18 cal ka and ~12 cal ka.  

Whilst field work is predominantly focussed on the ice surface of Patriot Hills BIA, 

some studies have also investigated englacial debris bands and east-west orientated blue ice 

moraine sequences in front of Patriot Hills (some of these sequences are visible in Figure 3.7). 

In the late 20th century these deposits were scoured by Lee et al. [1998] in search of rare 

meteorite deposits (which were found to be abundant in other BIAs in Antarctica). However, no 

meteorites were found during this expedition and indeed, only one meteorite has been collected 

in front of Patriot Hills to date, when Grossman and Zipfel [2001] identified a small meteorite in 

a moraine band in 2001. These moraine bands lie approximately parallel to the present-day ice 

sheet margin, where debris accumulates in large embayments, contained by bedrock spurs (like 

the one visible in Figure 3.7). Several ridge and trough systems can be recognised within the 

moraine systems, where the bands reach heights of  ~20 m and extend for over 4 km down  
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Figure 3.6. Patriot Hills BIA extent between 1996 and 2008, derived from field GPS 
measurements and manual digitisation of ASTER images. The Antarctic and Logistic 
Expeditions (ALE) camp and aircraft runway (L) are marked, as well as a moraine band (M). 
Background imagery was acquired from ASTER. White arrows indicate dominant ice flow 
directions. Image and associated data from Rivera et al. [2014]. 
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Figure 3.7. Photograph of Patriot Hills BIA, showing the location of blue ice moraines along 
the mountain range and in the main embayment as well as englacial debris bands and ice surface 
deposits.  
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valley, with widths of up to 200 m. Since 2011, three field campaigns, detailed by Fogwill et al. 

[2012] and Westoby et al. [2015, 2016] have focussed on researching the geomorphology, 

geology and history of the moraine sequences in front of Patriot Hills using a variety of 

techniques including cosmogenic nuclide dating, terrestrial-laser-scanning, structure-from-

motion photogrammetry and through the analysis of aerial photos from an unmanned aerial 

vehicle. A cross section through the blue ice moraine and ice sequence, collected by Fogwill et 

al. [2012] (recorded in Figure 3.8) shows the complexity of the system by detailing the 

hummocky moraine terraces that sit above the sloping surfaces of Patriot Hills as well as 

boulder moraine ridges, ice patches, thermokast melt pools, moraine ridges and troughs, folded 

englacial debris bands (where clasts emerge at the rippled blue ice surface), local and exotic 

boulders and the elevated firn deposits, which mark the transition between compressional blue 

ice flow and conventional valley ice flow.  By analysing the moraine clasts in detail Fogwill et 

al. [2012] discovered that the moraine ridges are often just one clast thick and although the 

majority (~80%) of clasts comprise of local lithologies, some other lithologies like sandstone 

and quartzite (which are exotic to the massif) were also recognised. Recent techniques in Digital 

Elevation Model (DEM) differencing, applied by Westoby et al. [2016] have revealed activity in 

these blue ice moraine systems, where analysis of data collected over two field seasons has 

revealed a net uplift and lateral movement of the moraine crest. This movement, which is forced 

by local ice flow, has been documented in Figure 3.9, where the study by Westoby et al. [2016] 

revealed a mean uplift of 0.10 m over a three month period in the austral summer of 2012/2013, 

and 0.70 m over a 13 month time period (between two field seasons), ending in February 2014.  

 

3.6.2 Other Blue Ice Areas in Horseshoe Valley 

Although Patriot Hills BIA is the most intensively studied BIA in Horseshoe Valley (as a result 

of its relatively easy accessibility - in terms of aircraft landing), several other BIAs have also 

been documented in the southern Heritage Range. For example, a number of studies (e.g. Doake 

[1981], Casassa et al. [1998], Bentley et al. [2010] and Fogwill et al. [2012]) have detailed the 

distinct hooked blue ice moraine sequences in front of Independence Hills, which can be seen in 
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Figure 3.9.  Change detection mapping of blue ice moraines in front of Patriot Hills main 
embayment using a) terrestrial laser scanning data collected at the start and end of season 1 
(defining a 3-month period), b) terrestrial laser scanning and unmanned aerial vehicle Structure-
from-Motion surveying over the same 3-month period and c) terrestrial laser scanning returns, 
compared between the start of season 1 and the end of season 2 (defining a 13-month period, 
ending in February 2014). Horizontal difference vectors (XYdiff) are detailed with black arrows 
(orientated according to the direction of change) while vertical change (Zdiff) is coloured in the 
background. Red dashes on all panels shows the approximate location of primary moraine ridge 
crest, where mean uplift is recorded. This figure has been extracted from Westoby et al. [2016]. 
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satellite imagery in Figure 3.5b. These moraine sequences (photographed in Figure 3.10) have 

recently been described by Westoby et al. [2016] who detailed 10 closely spaced parallel 

moraines (comprising a maximum elevation of 10 km, a length of ~4 km and a width of a few 

tens of metres) at the foot of a 500 m escarpment (Figure 3.10). Further investigations by 

Westoby et al. [2016] revealed that the lithologic composition of these moraines varies down 

valley and across ridges as a result of the along-strike variation in the geology of the 

Independence Hills. Although there are no direct measurements of the shape or size of 

Independence Hills BIA in the past, the large moraine sequences in the foreground of the 

mountain chain suggest prolonged katabatic wind scour and sublimation. Similar hypothesis are 

formed further up valley, where comparably large BIAs and BI moraine systems dominate the 

leeward slopes of elevated nunataks (including Morris Cliffs, Marble Hills and Liberty Hills) 

(Figure 3.5).  

 

3.7 Summary 

The potential for widespread instability in the Weddell Sea sector of West Antarctica has been 

highlighted in a number of studies in recent years, where investigations by Ross et al. [2014]; 

Wright et al. [2014] and Siegert et al. [2016] have stressed that even a slight retreat of the local 

grounding line between the over-land flowing IIS and the floating FRIS could increase the 

potential for widespread and possibly irreversible ice sheet drawdown. This fear has been 

compounded by airborne geophysical RES analysis, which has revealed that 60% of the large 

IIS catchment lies well below sea level, where there is little small scale topography to act as a 

pinning point for grounding line retreat. It is therefore imperative to improve our understanding 

the flow of ice in the upper IIS catchment in and around the Ellsworth Mountains, where IIS 

tributaries flow through deep trough systems which lie well below sea level. 

 The range of sites and relatively easy access makes Horseshoe Valley and the 

surrounding area an ideal site for investigating the past and present ice flow regime of the upper 

IIS catchment. A variety of local and contemporary studies in the region which focus on 

climate, mass balance and geology will help to provide a back drop for investigating ice sheet   
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Figure 3.10. Blue Ice moraine sequences in front of Independence Hills. Photograph courtesy 
of Dr Shasta Marrero (University of Edinburgh). 
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dynamics and ice flow history of the upper IIS catchment in and around the Ellsworth 

Mountains. Geophysical investigations of BIAs and debris entrainment in and around 

Horseshoe Valley will also help to complete our understanding of local ice flow phenomenon 

and continent wide debris entrainment mechanisms.  
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CHAPTER 4 

Methodology 

 

This chapter will present a brief background on the uses and capabilities of ice penetrating radar 

in glaciology. The collection and processing methodologies of GPR and RES data from 

Horseshoe Valley and the upper Institute Ice Stream catchment will be detailed, along with 

methods for data analysis, which include manual and automatic classification of radargram 

features as well as comparisons to recent ice velocity data.  

  

4.1 Introduction to ice penetrating radar 

Ice or ground penetrating radar techniques use electromagnetic waves to detect a variety of 

subsurface features, such as rock, soil and ice, as well as man-made structures like pavements. 

In cryospheric research, ice penetrating radar has been used since the early 20th century to image 

ice thickness, to investigate changes in ice flow [Siegert et al., 2004a; Rippin et al. 2006], to 

calculate past accumulation rates [Fahnestock et al., 2001a], in ice-flow modelling studies 

[Conway et al., 1999; Siegert et al., 2003; Martin et al., 2006, 2009; Waddington et al., 2007; 

Eisen, 2008] and to constrain layer ages from ice cores [Waddington et al., 2007]. In each case, 

the radar system is composed of three main components: a transmitting unit, a receiving unit 

and a control unit, which typically contains a display unit. Both the transmitter and receiver are 

equipped with similar antennae, which typically contain dipoles. The transmitter�¶s primary 

function is to generate a pulse of electromagnetic radar waves that penetrate the subsurface, 

commonly at frequencies between 1 and 1,000 MHz [Daniels et al., 1988; Hubbard and 

Glasser, 2005], whilst the receiver is designed to detect both the direct signal travelling straight 

�I�U�R�P�� �W�K�H�� �W�U�D�Q�V�P�L�W�W�H�U�� ���W�K�H�� �µ�D�L�U�Z�D�Y�H�¶���� �D�Q�G�� �W�K�H�� �F�R�P�S�R�Q�H�Q�W�V�� �R�I�� �W�K�H�� �W�U�D�Q�V�P�L�W�W�H�G�� �V�L�J�Q�D�O�� �W�K�D�W�� �D�U�H��

reflected within the ice body [Hubbard and Glasser, 2005] (Figure 4.1). These signal 

components vary as radar waves are preferentially absorbed or reflected by internal surfaces. 

The frequency output of the system will depend upon the lengths of the dipole antennae and the 
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Figure 4.1. Schematic GPR transect showing a transmitter (T) and receiver (R) with a fixed 
antenna separation on the ice surface. The resultant radar waves are also shown. This Figure has 
been extracted from Davis and Annan, [1989]. 
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material into which the waves are propagated. High frequency antennae, producing short 

wavelengths, will allow thin layers to be resolved, relative to low frequency antennae which 

produce longer wavelengths.  In essence, the lower the antennae frequency is (i.e. the longer the 

wavelength), the greater the penetration depth that can be achieved. There is therefore a trade-

off between resolution (the thickness of a layer which can be imaged [Davis and Annan, 1989]) 

and penetration depth. The energy received is typically displayed as a plot of signal amplitude 

against two-way travel time (TWTT) (Figure 4.1). This produces an image of the subsurface 

beneath the transect line, which includes off-line reflective components.  

In glaciological applications, radar wave propagation through ice is principally 

controlled by two material properties: i) permittivity, and ii) conductivity. Permittivity refers to 

the capacity of ice to store an electrical charge. This effectively impedes the flow of an applied 

electrical current. Electrical permittivity is therefore normally described relative to that in free 

space, and, as such, it should more accurately be referred to as relative permittivity, which is 

commonly called the dielectric constant [Hubbard and Glasser, 2005]. Electrical conductivity 

on the other hand describes the ability of a material to conduct an electrical current. In ice this is 

controlled by its ionic or impurity content. Kulessa [2007] describes how electrical conduction 

through ice with high impurity content occurs principally at grain boundaries and triple 

junctions within the ice, whilst networks of impurities at grain boundaries are more important in 

ice which has moderate impurity content. Finally, Kulessa [2007] also states that electrical 

conduction through low-impurity ice occurs principally through the movement of protonic point 

defects.  Although the precise effects of impurity characteristics, density and temperature on 

electrical conductivity are poorly understood Stillman et al. [2013] note that electrical 

conduction through meteoric polar ice is principally controlled by subtle impurities that 

originate mostly from volcanic eruptions, sea salt and biomass burning. As such, natural polar 

ice tends to be more conductive than natural temperate ice, where fewer impurities are found 

[Hubbard and Glasser, 2005]. Relative permittivity and electrical conductivity are both 

important factors to consider when detecting and analysing radar waves, as both can strongly 

influence radar wave velocity, power loss, resolution and detectability.  
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Further information on the history of ice penetrating radar, methodological approaches 

and applications are beyond the scope of this PhD, but can be found in reviews by Bingham and 

Siegert [2007], Daniels [1996, 2004] and Jol [2009], amongst others. 

 

4.2 Ground penetrating radar 

4.2.1 GPR data collection  

Several GPR transects have been collected and analysed for this thesis. During each survey 

Differential Global Positioning System (DGPS) measurements were collected at the same time 

as GPR returns, in order to locate and topographically correct transect lines. DGPS 

measurements were collected using a handheld or snowmobile-mounted Trimble GPS unit, 

linked to a local base station installed above bedrock, at the edge of Patriot Hills. Each GPR line 

was collected using �1�R�U�W�K�X�P�E�U�L�D���8�Q�L�Y�H�U�V�L�W�\�¶�V PulseEKKO 1000 GPR system. Specifications of 

this system are detailed in Table 4.1. During GPR collection, in the austral summers of 

2012/2013 and 2014 the PulseEKKO system was attached to a wooden sledge, to ensure that the 

co-polarised antennae consistently maintained a fixed separation distance of 1 m, with their 

broadsides parallel to each other (Figure 4.2). Once installed, the sledge mounted GPR system 

was pulled along transect lines in one of two modes depending on the coverage and resolution 

required; i) common-offset in step-and-collect mode or ii) continuous common-offset survey 

mode. Each of these methods is described below. 

 

4.2.2 Common-offset step-and-collect mode GPR 

Continuous step-and-collect mode surveying was used to record high resolution 200 MHz GPR 

profiles across Patriot and Independence Hills BIAs and their associated moraine sequences in 

the austral summer of 2012/2013 (Figure 4.2). In order to resolve detailed subsurface features 

within BIAs and ice-cored moraines �W�K�H�� �*�3�5�� �V�\�V�W�H�P�� �Z�D�V�� �V�O�R�Z�O�\�� �W�R�Z�H�G�� �R�U�� �µ�V�W�H�S�S�H�G�¶�� �D�O�R�Q�J��

transect lines, between survey points at 0.1 m intervals, where the GPR �F�R�X�O�G�� �µ�F�R�O�O�H�F�W�¶�� �G�D�W�D����

This method allows GPR location to be precisely controlled, allowing surface features to be  
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Table 4.1. Specifications of Northumbria Universities GPR system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

GPR SPECIFICATIONS 
 

Manufacturer  
 

Sensors and Software Inc., Canada 

System PulseEKKO 1000 

System performance 162 dB 

Programmable time window 32 �± 32767 ns 

Programmable sampling interval 10ps - 20000ps in 2ps steps 

Programmable stacking 1 �± 2048 stacks 

Transmitter output voltage 1000 V 

Transmitter power 2.1A @ 12V DC 

Antennae frequency  225, 450, 900, 1200 MHz 
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Figure 4.2. GPR data collection in Horseshoe Valley, a) shows the Pulse EKKO 1000 system, 
employed in common-offset step-and-collect mode, where the system records subsurface 
properties at pre-defined intervals whilst b) shows the set-up of continuous common-offset 
survey mode data collection, where the sledge-mounted GPR system is towed by a snow-mobile 
equipped with a DGPS rover. 
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linked to exact sub-surface radar returns. During data collection a constant time window of 

7000 ns was selected, along with an in-field stack of 8. This established but time-intensive 

method is described in more detail by Woodward et al. [2003b]. 

 

4.2.3 Continuous common-offset survey mode GPR 

Continuous common-offset surveying was employed in 2014 to investigate regional GPR 

returns, particularly across the BIA/firn margin at Patriot Hills (Figure 4.2). In comparison to 

step-and-collect mode GPR, this method allows faster data collection, albeit at a reduced 

resolution. During data collection the sledge-mounted PulseEKKO system was towed by 

snowmobile at approximately 12 km/hr, with no in-field stacking. 

 

4.2.4 Post-processing of GPR data 

Following data collection all GPR surveys were imported into ReflexW radar processing 

software (version 6.1.1) [Sandmeier Scientific Software, 2012] to sharpen the signal waveform 

by improving the signal to noise ratio [Reynolds, 2011]. Standard processing steps [Welch and 

Jacobel, 2005; Woodward and King, 2009; King, 2011] were applied in order to produce a 

cross-section of the subsurface electrical properties in terms of two-way wave travel time 

(TWTT), and then, depth or elevation in m (see figure 4.3). Processing steps to optimise the 

data series included time-zero correction; high pass frequency filtering (Dewow); bandpass 

filtering; background removal and diffraction-stack migration. An energy-decay gain was also 

applied. A brief description of these processing steps is provided below. 

 

Time-zero correction: As it takes a short time for the fibre optic cables to connect the antennae 

to the computer during a GPR survey, a delay is frequently recorded in the arrival time of the 

first wave-form (the airwave) from the transmitter. This delay does not remain constant as the  
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Figure 4.3. Flow diagram detailing the processing sequence applied to GPR profiles. Various 
processing steps are applied in ReflexW (Sandemeir Scientific Software) to produce the final 
migrated, topographically corrected GPR reflection profiles displayed throughout this thesis 
(this chart has been adapted from Neal [2004]). 
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GPR unit warms up to its optimal operating temperature as a survey progresses �± creating drift 

in the arrival time. Time-zero correction removes this drift by aligning the air wave arrival on 

the radargram.  

 

High pass frequency filtering (Dewow): Low frequency noise (<1 MHz) caused by saturation of 

the GPR electronics from large amplitude air and direct waves can often obscure real data at 

higher frequencies [Jol, 2009]. Daniels [2004] suggest that the exact frequency of this noise, or 

wow, is a function of the distance between the antennae, the antenna-to-ground coupling and the 

electrical state of the near surface medium. High pass frequency filtering can be used to 

eliminate this low frequency part (dewow) by passing frequencies above a specified high pass 

frequency in the time domain.  

 

Band-pass filtering: This filter acts on each trace independently, to remove unwanted noise at 

the high and low end of the amplitude spectrum, in the frequency domain [Woodward et al., 

2003b]. Four frequency values are set to define an upper and lower plateau before a constant-

phase filter is applied. This filter prevents events shifting in time, which would result in depth 

calculation errors. 

 

Background removal: Repetitive noise signals across a whole profile, created by a slight ringing 

in the antennae can often produce coherent banding effects in a radargram, parallel to the 

surface wave [Woodward et al., 2003b]. To remove these bands of consistent noise background 

removal can be applied. This processing step performs a subtracting of an averaged trace, which 

effectively removes the banding without degrading information within the trace [Woodward et 

al., 2003b]. In order to keep real linear events in the profile, such as the air and surface wave, 

the window at which the filter operates must be specified. 
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Diffraction-stack migration: Time migration is used to trace reflections and diffraction energy 

back to their true position or source, using a velocity function [Daniels, 2004]. This processing 

step contracts strong reflectors to a minimum and allows more useful interpretations of the 

radargram to be made. 

 

Energy-decay gain: This processing step can be applied to compensate for damping or 

geometric spreading losses in the radargram [Daniels, 2004]. By activating this option, a gain 

curve in the y (time) direction is applied to the complete profile (based on the mean amplitude 

in the decay curve, which is determined from all existing traces).   

 

Final display: For display purposes depth and topographic corrections were also applied using 

base-station corrected DGPS data and a standard ice velocity of 0.168 m ns-1. Applying this 

standard velocity underestimates the depth of firn layers away from the mountains and their 

associated BIAs. Once processed, all radargrams were plotted in 2D in ReflexW (version 6.1.1) 

or Matlab (R2013a) (depending on the resolution required), whilst Opendtect seismic 

interpretation software (2015) was used to plot radargrams in real-space using base-station 

corrected GPS co-ordinates, to enable three-dimensional analysis of the radargrams.   

 

4.3 Radio-echo sounding 

4.3.1 RES data collection 

Airborne RES data, collected by the British Antarctic Survey Polarimetric-radar Airborne 

Science Instrument (PASIN) ice-sounding radar [Corr et al., 2007] will also be analysed in this 

thesis to determine the subglacial topography and englacial stratigraphy of the upper IIS 

catchment (specifications of this system are detailed in Table 4.2). These data were collected 

during a traverse of the IIS and MIS during the austral summer of 2010/2011, when the PASIN 

system was installed on a ski-equipped Twin Otter aircraft (Figure 4.4). Flights were flown in a 

stepped pattern to optimise the acquisition of gravity data [Ross et al., 2012], whilst radar/laser  
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Table 4.2. �6�S�H�F�L�I�L�F�D�W�L�R�Q�V���R�I���W�K�H���%�U�L�W�L�V�K���$�Q�W�D�U�F�W�L�F���6�X�U�Y�H�\�¶�V���5�(�6���V�\�V�W�H�P�� 
 
 

 
 
 

 

 

 
 
  

 

RES SPECIFICATIONS 
 

Manufacturer  
 

British Antarctic Survey 

System PASIN 

Type Coherent 2 pulse 

Carrier Frequency 150 MHz 

Bandwidth 10 MHz 

Resolution 0.1 m along track / 8 m depth 
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Figure 4.4. Integration of ice penetrating radar onto long-range British Antarctic Survey 
aircraft. Figure acquired from the British Antarctic Survey. 
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altimeter terrain-clearance measurements compensated for flight altitude. Aircraft position was 

obtained from DGPS. During each flight the radar system was operated at a frequency of 150 

MHz and a bandwidth of 12 MHz, with a pulse-coded waveform acquisition rate of 312.5 Hz. 

All RES data were initially pre-processed using Doppler (SAR) processing which was 2D 

focused. As this processing step is designed to enhance basal features, the uppermost ~150 m of 

SAR-processed radargrams is often poorly resolved (e.g. Figure 4.5). In order to investigate 

near-surface reflections, most RES lines were also subject to Chirp and Pulse processing (e.g. 

Figure 4.5). A visual comparison of these airborne RES processing steps is provided in Figure 

4.5. More technical details of the PASIN system are available in Corr et al. [2007], and 

additional details on the acquisition of the airborne RES data are provided in Ross et al. [2012].  

 

4.3.2 Post-processing of RES data 

Post-processing of RES data was provided by the British Antarctic Survey, who migrated radar-

scattering hyperbolae in the along-track direction of flight lines before a natural logarithm was 

applied to enhance weaker reflections. Conversion of time to depth was achieved by application 

of a constant two-way travel time of 0.168 m ns-1, offset by a nominal value of 10 m to correct 

for the firn layer [Ross et al., 2012]. Once processed, radargrams were plotted in 2D and 3D 

using Matlab and Opendtect seismic interpretation software (set in real-space using DGPS data) 

respectively. Based on crossover analysis of the entire survey, RMS differences of 1.44 m were 

found in ice surface elevation and 18.29 m in ice thickness measurements, although an RMS 

error of 20.58 m was obtained for the upper parts of the gridded survey area, which is in part 

caused by the roughness of the underlying topography [Ross et al., 2012]. Further information 

on processing steps employed by the British Antarctic Survey is provided in Ross et al. [2012].  

 

4.4 Analysis of radar-detected internal layering  

Following discussions on the formation of englacial layering in Chapter 2 and methods used to 

collect geophysical data in sections 4.2 and 4.3, this section will now detail conventions for 
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Figure 4.5. Comparisons between various airborne RES processing steps: Chirp (15 MA), SAR 
(9MA), Pulse (25MA) and Pulse (33MA). It is worth noting that each MA value relates to the 
number of radar shots that were coherently integrated with a moving average window. Although 
each processing step creates a visually distinct output (focussing on the bed or surface etc.), in 
each case, RES returns detect the surface, basal topography and strong englacial features.  
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analysing ice penetrating radar detected englacial stratigraphy. To begin with, it is widely 

agreed that all englacial features resolved by geophysical means should be described in terms of 

their reflection continuity, dip angle and relationship to other reflections (e.g. Neal [2004]) 

(Figure 4.6). Once described, internal layers can then be classified into one of two broad 

categories; continuous or discontinuous layering. These terms are frequently used in 

geophysical surveys (e.g. Rippin et al. [2003]; Siegert et al. [2003]; Bingham et al. [2007] and 

Karlsson et al. [2009]) to define either continuous, well-defined layering, which comprises of 

internal layers which predominantly follow the surface and/or bed topography or discontinuous, 

buckled or disrupted layering which denotes internal-layer geometries that substantially diverge 

from the bed and/or surface. Continuous layering is primarily located in regions which currently 

experience or have experienced slow-flowing ice, which is defined here, in the upper IIS 

catchment as ice flow �”30 m a-1 which has undergone little motion. In contrast, disrupted 

layering is often coincident with areas that have previously encountered, or are currently 

experiencing enhanced flow (defined here as >30 m a-1), or at the boundary between areas of 

slow and enhanced flow [Karlsson et al������ ���������@���� �,�Q�� �W�K�L�V�� �W�K�H�V�L�V���� �W�K�H�� �W�H�U�P�� �³�H�Q�K�D�Q�F�H�G�� �I�O�R�Z�´�� �L�V��

�G�L�V�W�L�Q�F�W���I�U�R�P���W�K�H���W�H�U�P���³�I�D�V�W���I�O�R�Z�´���E�H�F�D�X�V�H���W�K�H��latter term is often equated with more extreme ice 

speeds in ice streams. However, previous studies (e.g. Bingham et al. [2007]) have shown that 

even the more modest speeds attained by ice-stream tributaries are all that is required to produce 

disruptions to internal layering.  

In this thesis, interpretations of ice penetrating radar detected internal stratigraphy will 

follow two established approaches, which work at different scales: 1) manual, qualitative 

interpretations will be used for detailed analysis of local ice penetrating radar data whilst 2) 

automated, quantitative interpretations will be used to examine more regional airborne RES 

returns. The first approach highlights internal stratigraphy through manual digitisation of 

radargrams, where obvious features are marked by continuous black lines, whilst less 

discernible features are highlighted by dashed lines. The second approach uses a faster, 

automated Internal Layering Continuity Index (ILCI) to characterise regions of apparently  
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Figure 4.6. Ice penetrating radar internal reflection terminology, modified from Neal [2004]. 
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continuous versus disrupted internal layering from large-scale RES data sets. The ILCI, 

developed by Karlsson et al. [2012], and recently applied to the wider catchments of IIS and 

MIS by Bingham et al. [2015], uses A-scope plots of each RES trace (each trace representing a 

stack of ten consecutive raw traces to minimise noise [Karlsson et al., 2012]) to record peaks of 

high reflected relative power, bounded by values of lower reflected relative power. Using the 

relative changes in power (uniform in value across all study sites) the continuity of internal 

layers can be determined at a full-depth profile scale, or percentage layer scale, as areas with 

clear internal layers will  return a high continuity index (0.06 - 0.10), whilst A-scopes 

interrogated where layering is absent will return a low continuity index (0 - 0.03). This leaves 

disrupted internal layering to return an intermediate value (0.03 - 0.06), where low and 

intermediate values have been interpreted to represent present or previously enhanced flow, 

which is characterised by disrupted layer packages interspersed with regions of little to no 

layering. 

 

4.5 Surface velocity data 

Surface velocity data, acquired from the MEaSUREs InSAR-based Antarctica Ice Velocity Map 

[Rignot et al., 2011a] will also be used throughout this thesis to compare radar returns to current 

ice flow velocities. The digital mosaic was created by Rignot et al. [2011b] using ALOS 

PALSAR, RADARSAT-1, RADARSAT-2, ERS-1, ERS-2 and Envisat Advanced Synthetic 

Aperture radar sensors which each covered discrete areas of Antarctica from 1996 �± 2009. 

Nominal errors, associated with the precision of ice flow mapping do exist, and vary within the 

digital mosaic depending on data collection methods, the type of instrument used, the 

geographic location, the time period and repeat cycle of the instrument, as well as the amount of 

data stacking. Using the error map form Rignot et al. [2011b] the precision of ice flow mapping 

in the upper IIS catchment is estimated to be 4.2 m a-1. 
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4.6 Summary 

In this thesis a variety of ice penetrating radar surveys will be collected and analysed to 

investigate ice flow and englacial debris entrainment in and around Horseshoe Valley. Methods 

of data collection and analysis follow well-established approaches, used by all geophysical 

researchers in cryospheric settings. As GPR and RES operate at different scales and 

frequencies, radargrams acquired from each method will be discussed and analysed individually 

in 2D and 3D, before datasets are combined with ice velocity data for regional and historic 

analysis. 
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CHAPTER 5 

Ground penetrating radar 

 

Several high-resolution GPR transects will be investigated in this chapter to assess the 

continuity of a BIA horizontal climate record from Patriot Hills published by Turney et al. 

[2013]. Results are combined with PISM model simulations and RES-derived ILCI plots to 

determine the evolution of ice sheet flow in Horseshoe Valley over the last 30,000 years. This 

chapter includes and expands upon work published by Winter et al., [2016]. 

   

Ground penetrating radar objective  

Analyse englacial stratigraphy within the Blue Ice Area at Patriot Hills to determine historic 

changes in ice flow and/or accumulation. 

 

Research questions 

1) Can ground penetrating radar be used to examine BIA? 

2) Is the BIA horizontal climate record at Patriot Hills continuous? 

3) Can the climate record at Patriot Hills be relied upon? 

4) Is there evidence for growth and/or stabilisation of Patriot Hills BIA? 

 

5.1 Introduction  

This chapter uses high-resolution GPR transects to record the internal stratigraphy of Patriot 

Hills BIA  in Horseshoe Valley.  In 2013 a 900 m long central BIA transect (transect A), 

extending perpendicular from Patriot Hills (Figure 5.1) was surveyed using GPR in continuous 

step-and-collect mode to examine the continuity of an 800 m long climate transect published by 

Turney et al. [2013]. Three 100 m long crosslines were also surveyed in continuous step-and-

collect mode during this period, intersecting transect A at 200 m, 500 m and 800 m along the  
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Figure 5.1. (a) MODIS mosaic [Haran et al., 2006] showing the location of GPR transects in 
front of Patriot Hills, Horseshoe Valley. Ice flows from the head of the Horseshoe Valley 
towards Patriot Hills. (b) Zoom in of the nested ground penetrating radar grid (X1-X5, Y1-Y8) 
and the climate transect (A), with cross lines (B-D). Red lines show the location and extent of 
ground penetrating radar profiles displayed in 2D in this chapter. Arrows show the direction of 
data collection away from the mountains (A, Y1-Y8) and down valley (X1-X5, B-D).  
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profile (Figure 5.2). In 2014 snowmobile-towed common-offset surveying was also employed 

for wider analysis of Patriot Hills BIA and firn. These surveys provided a nested grid of high 

frequency lines (approximately 7 x 9 km with 1 km x 1.5 km grid cells) extending from the BIA 

moraine margin towards the centre of Horseshoe Valley (Figure 5.1). All GPR surveys have 

been analysed in conjunction with pre-existing Parallel Ice-Sheet Model simulations and ILCI 

plots at pre-defined depth intervals of 0-20% (uppermost ice column), 40-60% and 80-100% ice 

thickness, to place GPR findings into an historical context. 

 

5.2 Results 

5.2.1 Ground penetrating radar 

Returns from GPR transect A, surveyed along Patriot Hills BIA are displayed in 3D in figure 

5.2. This figure is annotated to show the beginning of the 800 m long climate transect, which 

starts 100 m along the GPR profile, as well as the intersection of crosslines B, C and D. Figure 

5.2b shows each of these crosslines in detail, where internal horizons representing former ice 

sheet surfaces are recorded throughout the 250 m deep profile, although, like inline A, reflection 

strength decreases with depth (as a function of radar attenuation) which limits the analysis of 

deep internal layers. In order to investigate the detailed internal structure of transect A, and 

indeed Patriot Hills BIA, Figure 5.3 focusses on the uppermost 50 m of the transect, along the 

800 m long climate line. This figure reveals a number of steeply dipping isochrones which are 

punctuated by shallow (2 m) ice core sites at 100 and 200 m along the transect where Turney et 

al. [2013] extracted ice for climate analysis. Ignoring the reflections from the boreholes, it is 

clear that continuous, conformable, steeply dipping (inclined by 24° - 45° towards Patriot Hills) 

isochrones dominate the radargram, where they are recorded from 0 m �± 246 m, 249 m �± 359 m 

and 362 m �± 800 m. Here, the internal reflectors strike from the lower ice column up towards 

the BIA surface. However, at 247 m and 360 m there are discontinuities in the isochrone layers 

(highlighted in red and labelled D1 and D2 in Figure 5.3), where divergent isochrones represent 

significant changes in isochrone dip angle. Figure 5.3b focusses on these features, where the  
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Figure 5.2. Three-dimensional transect along Patriot Hills Blue Ice Area showing the 
intersection between transect A and cross lines B, C, D which are shown in detail in the lower 
panel. The start of the 9800 m long climate transect, beginning at 100 m along transect A is also 
highlighted.  
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Figure 5.3. (a) Ground penetrating radar transect A, collected along Patriot Hills Blue Ice Area 
climate line. The black box represents the spatial extent of (b) and (c) which focus on two 
discontinuities (D1 and D2) that show changes in dip in an otherwise conformable englacial 
sequence. Both discontinuities are associated with the truncation of isochrones. D1 is located 
247 m along the radar profile, whilst D2 is situated 360 m along the transect.  
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radargram and digitised transect (Figure 5.3b and 5.3c) reveal that D1 and D2 are associated 

with the truncation of isochrones.  

 By comparing GPR transect A with the climate record published by Turney et al. [2013] 

in Figure 5.4, it is evident that discontinuities D1 and D2 correlate to rapid changes in the trend 

�R�I���W�K�H���G�H�X�W�H�U�L�X�P���L�V�R�W�R�S�L�F���U�H�F�R�U�G�����/�'���� �D�W���D�S�S�U�R�[�L�P�D�W�H�O�\���������F�D�O���N�D���D�Q�G���������F�D�O���N�D���>Turney et al., 

2013]. These rapid changes had previously been highlighted by Turney et al. [2013], in the form 

of shaded bands B1 and B2 (Figure 5.4 d) where �%�����P�D�U�N�V���W�K�H���W�U�D�Q�V�L�W�L�R�Q���I�U�R�P���D���O�R�Z���D�Y�H�U�D�J�H���/�'��

rate to a ris�L�Q�J���W�U�H�Q�G���L�Q���/�'���F�R�Q�F�H�Q�W�U�D�W�L�R�Q�V�����Z�K�H�U�H���/�'���L�Q�F�U�H�D�V�H�V���I�Uom -380 to -�������Å��, whilst B2 

marks a very rapid rise i�Q���/�'���F�R�Q�F�H�Q�W�U�D�W�L�R�Q�V��(from -300 to -�������Å), after which a higher average 

ratio continues for the remainder of the profile. Combined with a third band, B3 Turney et al. 

[2013] suggested that these zones could reflect significant fluctuations in temperature and/or 

precipitation during both the late Pleistocene and Holocene. However, unlike B1 and B2, further 

analysis of GPR transect A reveals no evidence of divergent or truncated isochrones at any other 

location along the profile, even at B3 (~ 8 cal ka), where a depletion in deuterium isotope 

content is recorded. 

Examples from the snowmobile-towed GPR grid, collected for wider analysis of the 

BIA and firn, are displayed as a three-dimensional grid in Figure 5.5 and in two-dimensional 

inline transects (surveyed perpendicular to Patriot Hills) in Figure 5.6 and 5.7. Compared to 

GPR in step-and collect mode this method is much faster, allowing a larger area to be surveyed, 

albeit at a decreased resolution (see chapter 4, section 4.22 and 4.23). As such, the snowmobile-

towed GPR can only resolve distinct features in Patriot Hills BIA, where there is a sharp 

dielectric contrast. In the BIA, these features are largely limited to D1 and D2, which are clearly 

recorded in inline profiles Y1-Y8 (e.g. Profile Y1, Figure 5.5) as well as the ice/bed interface 

which is reflected at the beginning of each inline profile (Figure 5.5). 

Although the BIA is poorly resolved by the snowmobile towed GPR, numerous internal 

horizons can be identified at the BIA/firn margin, and indeed well into the firn zone, as the 

inline transects extend towards the centre of Horseshoe Valley. At the margin, internal reflectors  
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Figure 5.4. Visual comparisons between GPR returns and deuterium isotope records along a 
central BIA transect, extending from Patriot Hills (a) Ground penetrating radar transect A 
records the subsurface internal layer structure of Patriot Hills BIA (arrows indicate vertical 
noise from boreholes). (b) Picked, prominent internal GPR reflectors showing two locations 
where the internal reflectors are disturbed, i.e. showing changes in dip and discontinuity. D1 is 
at 247 m and D2 at 360 m along the transect. (c) Spatial variability of internal reflector dip 
angles in the along-line direction (averaged over 20 m intervals), and (d) Patriot Hills deuterium 
�L�V�R�W�R�S�H���U�H�F�R�U�G�����/�'�����F�R�O�O�H�F�W�H�G���E�\��Turney et al. [2013] in 2012. Shaded bands B1, B2 and B3 are 
inferred points of correlation with ���H���� �W�K�H�� �(�3�,�&�$�� �(�'�0�/�� �/������ �2�� �U�H�F�R�U�G���>EPICA, 2006] (on the 
�*�,�&�&������ �W�L�P�H�V�F�D�O�H���� �D�Q�G�� ���I���� �W�K�H�� �1�R�U�W�K�� �*�U�H�H�Q�O�D�Q�G�� �L�F�H�� �F�R�U�H�� �/������ �2�� �>Rasmussen et al., 2006] as 
shown in Figure 4 of Turney et al. [2013]. 
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Figure 5.5. Snow-mobile towed GPR returns reveal poorly-resolved englacial stratigraphy in 
the dense BIA of Patriot Hills, although prominent reflectors, including D1, D2 and the bed are 
visible in most inline transects. The detailed firn sequences, digitised in 2D in figures 5.6 and 
5.7 are well-resolved in 3D, in both inlines and cross lines. 
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Figure 5.6. Snowmobile-towed 200 MHz ground penetrating radar cross lines. (a), (c), (e) and 
(g) all display elevation-corrected GPR profiles, where prominent internal reflectors have been 
picked and digitised to form (b), (d), (f) and (g), where prograding (P) and convergent (C) 
isochrone sequences are clearly visible.  
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Figure 5.7. More snowmobile-towed 200 MHz ground penetrating radar cross lines. Like figure 
5.6, (a), (c), (e) and (g) all display elevation-corrected GPR profiles, where prominent internal 
reflectors have been picked and digitised to form (b), (d), (f) and (g), where prograding (P) and 
convergent (C) isochrone sequences are clearly visible in each transect. Profiles Y5 and Y7 also 
display unique features; a snow drift (SD) is recorded in profile Y5, whilst a stratigraphic 
unconformity (UC) can be seen in Y7, where shallow dipping (2° apparent dip towards Patriot 
Hills) internal reflectors are overlain by younger near - horizontal firn layers. 
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record a net upward ice flow component, where isochrones are compressed and inclined to a 

maximum dip angle of 5°. However, as the transect extends away from Patriot Hills and the 

BIA, the steeply dipping internal reflectors smoothly transition to more horizontal and parallel 

firn layers which are recorded to a depth of 140 m below the surface, where radar reflection 

strength meets background noise levels.  

The transition between blue ice and firn is recorded and displayed for each inline 

transect in Figures 5.6 and 5.7. Each of these radargrams reveal a relatively featureless BIA, 

followed by sequences of convergent and prograding isochrones (see Figure 4.7 for a definition 

of internal reflection terminology), where englacial layers gently transition from inclined layers 

to more horizontal layers, as the radargram extends away from Patriot Hills. Although profiles 

Y1 and Y2 (Figure 5.6) display a similar pattern of englacial stratigraphy, where convergent and 

then prograding isochrones are recorded immediately after the BIA, profiles Y3 and Y4 (Figure 

5.6) exhibit a change to a prograding-convergent-prograding isochrone sequence, which occurs 

when Patriot Hills BIA increases in size, and extends further into Horseshoe Valley. In profile 

Y5 a larger convergent-prograding isochrone sequence is recorded, where layers are tightly 

compacted between the BIA and a shallow snow drift (~9 m thick) which extends 440 m along 

the former, near horizontal firn surface. Although the next snowmobile-towed GPR line (Y6) is 

only 1 km down valley from profile Y5, the large snow drift is no longer visible in this inline 

transect. Instead, profile Y6 displays a prograding-convergent-prograding sequence ~2150 m 

along the transect line, after the now enlarged and still featureless BIA. The only erosional 

unconformity to be discovered in the snow-mobile towed GPR grid is revealed in profile Y7 

(Figure 5.7) where gently sloping (2° apparent dip towards Patriot Hills) internal horizons 

reveal a prograding-convergent-prograding sequence overlain by younger, near horizontal firn 

layers between 2690 m and 3149 m along the transect. These almost horizontal layers more than 

double in thickness with increasing distance from Patriot Hills. Again, this feature is not 

recorded 1 km down valley in Profile Y8, where a thicker horizontal firn sequence is recorded 

above a prograding-convergent-prograding isochrone sequence (Figure 5.7). 
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5.2.2 Ice-sheet model simulations 

In order to place GPR findings into a regional and historic context, simulated regional ice flux 

models for Horseshoe Valley and the upper IIS catchment (provided by Dr. Nicholas Golledge, 

Victoria University of Wellington, New Zealand) were consulted (Figure 5.8). These Parallel 

Ice-Sheet model perturbations help to explain the initial response of the LGM ice sheet to ocean 

and atmospheric forcing. Although model runs simulate high discharge rates through all major 

troughs surrounding Horseshoe Valley, each simulation (representing time intervals) shows that 

no major ice flux or flow direction change is expected to have occurred in Horseshoe Valley 

since the mid-Holocene. Indeed, the simulations show that even with a rapid increase in ice flux 

in response to ocean warming and sea level rise (at 15,000 model years) [Golledge et al., 2012], 

modelled ice flowing into the IIS continues to discharge through Rutford Trough (Figure 5.8b), 

even when flow accelerates at the ice margins. As such, these model runs imply that continued 

oceanic forcing and grounding line retreat had no direct impact on the flow of ice around Patriot 

Hills, even when ice discharging into the main trunk of the IIS was diverted in a more east-

south-easterly direction towards the Thiel Trough during the mid-to-late-Holocene (Figure 5.8c, 

lower panel).  

 

5.2.3 Internal Layer Continuity Index (ILCI) plots 

Although regional model simulations by Dr. Nicholas Golledge have suggested that no major 

ice flux or flow direction change occurred in Horseshoe Valley during the mid-Holocene, it is 

also important to analyse local field evidence, in the form of deep airborne RES transects, 

collected by Dr. Neil Ross and colleagues. ILCI plots across a central transect line in Horseshoe 

Valley (Figure 5.9) demonstrate that the uppermost ice in Horseshoe Valley (0-20% of the ice 

column) is dominated by continuous internal layering, indicative of slow flow, while older ice at 

40-60% ice thickness and then 80-100% of the ice column return progressively higher ILCI 

values. Following methodologies reported in Chapter 4, these high ILCI values, sourced at 

depth, provide evidence for previously enhanced ice flow in Horseshoe Valley (more  
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Figure 5.9. ILCI results from airborne RES flight lines across Horseshoe Valley (using 100 
trace moving windows) at various depth intervals, (a) % layer 0-20 reveals high ILCI values 
indicative of continuous layering in the uppermost ice column, (b) % layer 40-60 in the central 
ice column shows both continuous and disrupted internal layering, while (c) % layer 80-100 
shows the most disrupted and discontinuous layering at depth. These plots, superimposed onto a 
RADARSAT mosaic [Haran et al., 2006] reveal that ice flow in Horseshoe Valley has been 
stable and slow-flowing in recent years.  
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information is provided in Chapter 6 and the resultant paper �± Winter et al. [2015]). As this 

enhanced ice flow is not recorded in any of the mid-Holocene to post-LGM PISM perturbations, 

it is expected that the disrupted englacial layering recorded deep within Horseshoe Valley ice 

flow formed near the start of the Holocene period, or possibly, even earlier (depending on the 

speed of ice excavation).   

 

5.3 Discussion  

By combining findings form GPR transects with ice sheet model simulations and ILCI analysis, 

it has been possible to constrain the evolution of Patriot Hills BIA, and better understand 

historic ice flow in Horseshoe Valley. The central BIA GPR transect A has revealed a sequence 

of largely conformable isochrones, which are inclined towards Patriot Hills BIA surface (to 

compensate for the negative mass balance promoted by katabatic wind scour and enhanced 

sublimation which create BIAs �± see Chapter 2, section 2.5.6). Minor changes in the dip angle 

of these predominantly parallel internal horizons have been recorded, and are expected as a 

result of differential snow deposition, burial and subsequent ice flow over time but the 

pronounced changes in dip angles at D1 and D2 (Figures 5.3 and 5.4) represent larger scale 

change. These discontinuities, associated with truncated isochrones, correspond to abrupt shifts 

in the local climate record between ~18 cal ka (B1) and ~12 cal ka (B2) (Figure 5.4) and 

therefore represent breaks in an otherwise largely unbroken 30,000 year climate record. These 

breaks, given new context by the unconformities in GPR Transect A, could have formed by one 

of two mechanisms: (i) changes in ice flowline trajectory, or (ii)  by the local interaction of 

topography, snow accumulation and wind.  

As ice-sheet model simulations and ILCI analysis suggest that ice in Horseshoe Valley 

has not experienced directional change (Figure 5.8) and has remained slow-flowing (Figure 5.9) 

since the mid-Holocene, the possibility that discontinuities D1 and D2 were formed by changes 

in ice flow-line trajectory can largely be eliminated. However, these simulations do not rule out 

significant periods of erosion which could have resulted from the interaction of topography, 



109 
 

snow accumulation and wind as ice flows from the head of Horseshoe Valley towards Patriot 

Hills (Figure 5.10). It is therefore expected that discontinuities D1 and D2, corresponding to 

changes in deuterium isotope concentrations at B1 and B2 (Figure 5.4d), were created by 

localised katabatic wind scour of the former snow and ice surface as ice flowed along its 

present-day trajectory, through BIAs in front of Liberty and Marble Hills (Figure 5.10). 

Consequently, it seems probable that deuterium isotope incursions B1 and B2 do not directly 

represent abrupt climatic changes, but instead reflect breaks in the otherwise conformable 

climate record. As no other erosional events are found in the GPR record, it is assumed that 

other inferred depletions in the deuterium isotopes, such as that at B3 (Figure 5.4d), could 

reflect direct climatic changes during the early Holocene, and indeed may correlate with 

changes in other ice cores as suggested by Turney et al. [2013].  

The findings from the extended radar grid are in close agreement with the high 

resolution BIA transect. Here the inline profiles show more recent periods of BIA stability and 

instability, reflected by convergent and prograding isochrones in the firn zone. Prograding 

isochrones in the GPR record (Figures 5.6 �± 5.7) are attributed to increased katabatic wind 

scour, and subsequent BIA expansion since the LGM. This is likely the result of surface 

lowering in Horseshoe Valley of up to ~400 m since the LGM [Hein et al., 2016b], which 

would have revealed more of the nunataks in the Southern Heritage Range, capable of 

promoting stronger katabatic wind scour.  In contrast, younger convergent isochrones in the 

GPR record (Figures 5.6 and 5.7) represent more stable meteorological conditions, where 

katabatic winds of consistent velocity and direction have produced a transition zone between all 

annual snowfall to no snowfall scoured. If these transition zones are in the same location 

annually, convergent layering will result. It should be noted that this phenomenon also requires 

slow and stable ice flow. The sequences of BIA growth and stabilisation from the larger 

snowmobile-towed GPR grid combine to identify an evolving BIA over the past ~1,000 years, 

which is consistent with the previously analysed 30,000 year ice flow records. Like the 

boreholes recorded in GPR Transect A, the unconformable surface firn in profile Y7 and the 

snow drift in profile Y5 (Figure 5.7) have anthropogenic origins which, this time, are attributed 
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Figure 5.10. (a) Inferred ice flow path from the head of Horseshoe Valley to Patriot Hills 
(MODIS background image [Haran et al., 2006]), where discontinuities D1 and D2 formed as a 
result of Blue Ice Area wind scour in front of Liberty and Marble Hills, (b) schematic 
stratigraphic succession, indicating ice accumulation punctuated by two periods of erosion (red 
lines), (c) lowermost panel of (b) rotated 90 degrees to show an inferred cross section of  
unbroken snow/firn stratigraphy and, (d) uppermost panel of (b) rotated to show the observed 
GPR stratigraphic sequence at Patriot Hills BIA, where red lines indicate erosional events D1 
and D2.  
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to the recent movement of snow to create Patriot Hills Antarctic Logistics and Expeditions Base 

Camp (seasonally occupied between 1987 and 2010). 

 

5.4 Summary 

This chapter and associated paper (Winter et al. [2016]) provide the first detailed 

account of the internal structure of BIAs. Radar-detected stratigraphic relationships analysed in 

conjunction with deuterium isotope records, ice-sheet model simulations and internal layer 

continuity index analysis at Patriot Hills BIA indicate the following: (1) stable periods of snow 

accumulation and ice flow have been interrupted by episodes of significant erosion, which have 

resulted in unconformities within an otherwise conformable stratigraphic record and (2) the 

current trajectory of ice flowing towards Patriot Hills BIA is, in essence, unchanged over the 

recent historical record. These findings imply that deuterium isotope records from Patriot Hills 

BIA reflect conditions in Horseshoe Valley (and the WAIS) over at least the last 30,000 years, 

though due consideration must be taken around the two periods of differential wind scour.  

Importantly, this research also demonstrates the considerable value of using GPR in 

step-and-collect-mode to interpret ice sheet history from BIAs, as conventional snowmobile 

towed GPR cannot resolve the detailed internal structure of these ice features.  This finding is 

particularly relevant to the climate community, as low-cost and portable GPR surveys in step-

and-collect mode can greatly improve the reliability of relatively easily-accessible horizontal 

climate records. 
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CHAPTER 6 

Radio-echo sounding 

 

This chapter will use airborne RES to investigate the subglacial topography, internal 

stratigraphy and Holocene flow regime of the upper IIS catchment. It will include and expand 

upon the analysis of RES profiles published by Winter et al. [2015] in the Journal of 

Geophysical Research �± Earth Surface.  

 

Radio-echo sounding objective 

Determine the internal structure of the West Antarctic Ice Sheet in the upper Institute Ice Stream 

catchment to establish historic changes in regional ice streaming. 

 

Research questions 

1) What is the current configuration of the upper Institute Ice Stream catchment and how 

does it affect ice sheet flow? 

2)  What was the ice sheet configuration, with respect to the Bungenstock Ice Rise, during 

the Holocene? 

3)  Was ice in Horseshoe Valley Trough an important tributary of the Institute Ice Stream 

in the past, both in its current configuration and in the configuration of Siegert et al. 

[2013]? 

 

6.1 Introduction  

Over 25,000 km of airborne RES data, collected during a survey of the IIS in 2010/2011 by Dr. 

Neil Ross and collaborators has been analysed in this chapter to investigate the internal structure 

and subglacial topography of the upper IIS catchment (Figure 6.1). Synthetic Aperture Radar 

(SAR) processed radargrams have been displayed in 2D and 3D, and investigated using manual 

digitisation of internal features and ILCI analysis. To recap methodologies detailed in Chapter 

4, during manual digitisation strongly reflective horizons were marked by black solid lines,  
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Figure 6.1. Location of airborne radio-echo sounding transects across the Institute and Möller 
Ice Stream catchments (pink), surveyed by Dr. Neil Ross and collaborators in 2010/2011. The 
dashed box denotes the extent of airborne radargrams investigated in this thesis whilst black and 
yellow lines highlight the location of radar profiles displayed in this chapter. Background 
imagery comprises MODIS mosaic images [Haran et al., 2006]. 
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whilst internal features with reduced reflectivity were marked with dashed lines (as their exact 

form was harder to define). Purple lines were used to extrapolate internal stratigraphic features 

in areas where radar returns were low. During automatic ILCI classification a high continuity 

index (0.06 - 0.10) is returned when layers are clear and continuous, intermediate values (0.03 - 

0.06) when layer packages are disrupted, with regions of little to no englacial layering, and low 

values (0 - 0.03) when layering is absent. It should also be noted here that internal layering 

cannot be resolved within the south-western side of Horseshoe Valley Trough as aircraft took 

off and/or landed in front of Patriot Hills. The uppermost 200 samples of the ice column 

(equivalent to ~9070 ns) are also poorly resolved in all radargrams as a function of 2D SAR 

processing. Once processed and analysed, RES transects were compared to surface velocity data 

(see Chapter 4) and previously examined surface lineations on the Bungenstock Ice Rise 

[Siegert et al., 2013] (Figure 6.2) to determine past ice sheet configurations and flow dynamics 

in the upper IIS catchment. 

 

6.2 Results 

6.2.1 Basal topography discrepancies 

During preliminary analysis of RES radargrams in Horseshoe Valley and the upper IIS 

catchment large discrepancies were found between RES-detected bed topography and the basal 

topography data presented in Bedmap2 [Fretwell et al., 2013]. In Horseshoe Valley, Bedmap2 

plots the basal topography ~1000 m higher than the RES detected bed (Figure 6.3), while 

discrepancies of up to 500 m are recorded elsewhere in the upper IIS catchment (for example, in 

the Independence Trough -  Figure 6.4). In all cases, the RES-detected bed reveals a lower 

elevation than the Bedmap2 dataset, and in most cases, Bedmap2 topography is aligned with a 

strong internal reflector. The errors encountered in the Bedmap2 dataset exceed the uncertainty 

values provided by Fretwell et al. [2013] (mapped in Figure 6.5), suggesting that automatic 

picking of radar lines in and around Horseshoe Valley incorrectly assigned the strong internal 

reflector identified in RES figures 6.3 and 6.4 as the bed. As such, all elevations and ice 

thicknesses cited in this chapter will utilise RES-derived bed topography measurements.   
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Figure 6.2. (a) Landsat Image Mosaic of Antarctica (LIMA) mosaic with prominent 
geographical features labelled; the labelled boxes outline the location of Figures 6.2b, 6.7c and 
6.7d. The white line in each section indicates the ASAID grounding line [Bindschadler et al., 
2011]. (b) MODIS mosaic of surface lineations on the Bungenstock Ice Rise [Haran et al., 
2006]. (c) Satellite-derived surface ice-flow velocities from MEaSUREs [Rignot et al., 2011a] 
superimposed over MODIS satellite imagery [Haran et al., 2006] and annotated to show 
dominant ice streams, the Bungenstock Ice Rise, Horseshoe Valley Trough (HVT), 
Independence Trough, Ellsworth Trough and Pirrit Subglacial Lowlands. (d) Location of 
radargram transects imaged in this chapter. Background shows bed elevation from the same area 
as Figures 6.2a and 6.2c, derived from Bedmap2 [Fretwell et al., 2013].  
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Figure 6.3. (a) RES flight line 8 across Horseshoe Valley and Patriot Hills, where ice flow is 
into the page. (b) Comparison between radar-detected bed (solid dark line) and the basal 
topography plotted from Bedmap2 [Fretwell et al., 2013] (red line). It is suspected that 
automatic picking, applied prior to Bedmap2 compilation could have incorrectly assigned the 
strong internal reflector, visible in (a) and marked by a black dashed line in (b) as the bed.  The 
ice surface has been marked by a solid blue line. 
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Figure 6.4. (a) RES flight line 3 transects Horseshoe Valley, the trough between Horseshoe 
Valley and Independence Hills as well as Independence Trough, where ice flow is into the page. 
(b) Comparisons between RES detected bed topography (solid dark line) and the basal 
topography derived from Bedmap2 [Fretwell et al., 2013] (red line) reveal more similar bed 
topography projections, although the basal topography in Bedmap2 often follows a strong 
internal reflector (marked in (b) by a black dashed line).   
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Figure 6.5. Estimated uncertainty from the bed elevation grid published by Bedmap2 [Fretwell 
et al., 2013]. The field site investigated throughout this thesis has been indicated with a black 
arrow. 

  

Field site  
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6.2.2 Basal topography of the upper Institute Ice Stream catchment 

Radar observations of the �,�,�6�¶�V�� �X�S�S�H�U�� �F�D�W�F�K�P�H�Q�W���� �L�Q�� �D�Q�G�� �D�U�R�X�Q�G�� �W�K�H�� �(�O�O�V�Z�R�U�W�K Subglacial 

Highlands, reveal complex tectonically-controlled basal topography [Jordan et al., 2013; Ross 

et al., 2014] with multiple nunataks, buried mountains, highland plateaus, basins and troughs 

(Figure 6.2d). This chapter focusses on three distinct troughs in the upper IIS catchment; 

Horseshoe Valley Trough, named after Horseshoe Valley at its head, Independence Trough, 

named after the adjacent Independence Hills and Ellsworth Trough which was named after the 

neighbouring Ellsworth Mountains. A distinct subglacial lowland, termed Pirrit Lowlands (after 

Pirrit Hills in the Pirrit Subglacial Highlands) has also been investigated. Each of these areas 

have been highlighted in Figure 6.2c. 

As a main focus of this thesis, it is important to describe the RES-detected features of 

Horseshoe Valley Trough, which has been imaged in 2D in Figure 6.6. As briefly mentioned in 

Chapter 3, the 20 km wide trough is confined in its upper parts by the steep mountains of the 

Heritage Range. However, RES has also revealed that some of the ice flow is also constricted at 

the end of the valley, where a subglacial ridge separates the somewhat confined ice flow with 

the present day trunk of the IIS. With a smooth bed lying 1300 m below sea level, Horseshoe 

Valley Trough contains an ice column in excess of 2000 m. However, this ice sheet thickness 

reduces significantly, to just 750 m, as the ice flows out of Horseshoe Valley where it is 

deflected northwards over the higher elevation terrain towards the main trunk of the IIS (Figure 

6.2d).  

 Lying sub-parallel to Horseshoe Valley Trough, but separated from it by the 1400 m 

high peaks of Independence Hills, is Independence Trough (Figure 6.7). This 22 km wide 

trough is delineated to the south by a 20 km wide subglacial mountain range which has a 

maximum elevation of 770 m above present sea level. Unlike Horseshoe Valley Trough, the 

Independence Trough has a unique shape, which is characterised by the existence of two 6 km 

wide plateaus (P1 and P2 in Figure 6.7), which line either sides of the trough. These plateaus 

break the steep slope from the high nunataks which define Independence Hills and the deep 

subglacial valley floor, which sits 1100 m below present day sea level. The trough itself remains  
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Figure 6.6. (a) Radio-echo sounding cross section of Horseshoe Valley Trough (line 8), where 
ice flow is into the page; the arrows indicate processing artefacts. (b) Digitised basal topography 
(brown), lower basal ice unit (blue) and upper basal ice unit (purple) as well as internal 
stratigraphic features (black for observed, dashed for inferred and purple for best estimate). The 
secondary axis shows satellite-derived surface ice-flow velocities in red from MEaSUREs 
[Rignot et al., 2011a]. 
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Figure 6.7. (a) Radio-echo sounding cross section of Independence and Ellsworth Troughs (line 
2) where ice flow is into the page; the arrows indicate processing artefacts. P1 and P2 indicate 
plateaus in the basal topography. (b) Digitised basal topography (brown), lower basal ice unit 
(blue), and upper basal ice unit (purple) as well as internal stratigraphic features (black for 
observed, dashed for inferred, and purple for best estimate) and the location of surface flow 
stripes (F1�±F4). The secondary axis highlights satellite-derived surface ice-flow velocities in 
red from MEaSUREs [Rignot et al., 2011a]. (c) Flow stripes (F1�±F4) annotated from 
RADARSAT mosaic [Haran et al., 2006]. (d) Flow stripes identified on a satellite-derived 
surface ice-flow velocity map from MEaSUREs [Rignot et al., 2011a].  
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deep and straight for 54 km until the ice begins to flow in a more northwards direction, where 

the ice flow widens to 50 km, as the ice flow splays out between high elevation subglacial 

plateaus, until it reaches the main trunk of the IIS, where the ice crosses the local grounding line 

(Figure 6.2c). 

Described in detail by Ross et al. [2014], Ellsworth Trough (Figure 6.7) is the widest 

(up to 34 km wide) and most extensive valley (at ~260 km long) to be surveyed (Figure 6.2c). 

Although steep-sided bedrock walls confine the northern flank of the trough, the southern walls 

feature a more gradual inclination towards a high elevation subglacial plateau (Figure 6.7). This 

plateau defines mountainous basal topography which is intersected by a number of smaller 

valleys that are orientated roughly perpendicular to the main trough axis and present day ice 

flow. Two major tributaries feed Ellsworth Trough at the point where the trough becomes 

straight and aligned with Independence Trough (Figure 6.2c). Here ice thicknesses of 2100 m - 

2620 m are recorded as the ice is funnelled northwards towards the IIS, above bed elevations of 

700 m - 1500 m below present day sea level.  

 Although a distinctive trough morphology is not recorded in the vicinity of the Pirrit 

Lowlands (Figure 6.2), ice flow from the southern IIS catchment merges and flows between a 

number of highland plateaus and subglacial lows which define the Pirrit Highlands, as the ice 

makes its way towards the main trunk of the IIS and the local grounding line. Here, several 

bedrock obstacles, in the form of ridges, troughs and rough terrain are detected beneath the 

~1000 m thick ice flow (Figure 6.8). These obstacles create distinct fluctuations in bed 

elevation, allowing the basal topography to range from 200 m to 1150 m below present day sea 

level. However, basal topography is difficult to ascertain in Figure 6.8, at the point where the 

ice flow meets the Ellsworth Trough. This is largely a function of ice thickness. The basal 

horizon is also diffuse in the first 40 km of transect line 12, where the radar system identifies 

water at the base of the FRIS. 
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Figure 6.8. (a) Radio-echo sounding line 12 detailing subsurface features across Pirrit 
Lowlands, the Ellsworth Trough and the Institute Ice Stream (IIS). The horizontal black line in 
(a) and (b) indicates a turn in the RES flight, where the flight line crosses the local grounding 
line of the Filchner-Ronne Ice Shelf (b) Digitised basal topography (brown), lower basal ice 
zone (blue) and upper ice zone (purple) as well as internal stratigraphic features (black for 
observed, dashed for inferred and purple for best estimate). The secondary axis highlights 
satellite-derived surface ice flow velocities in red from MEaSUREs [Rignot et al., 2011a].  
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6.2.3 Internal stratigraphy  

�$�O�W�K�R�X�J�K���E�D�V�D�O���W�R�S�R�J�U�D�S�K�\���L�V���F�O�H�D�U�O�\���G�H�W�H�F�W�H�G���E�\���W�K�H���%�U�L�W�L�V�K���$�Q�W�D�U�F�W�L�F���6�X�U�Y�H�\�¶�V���3�$�6�,�1��system, 

the airborne RES transects also reveal several englacial features related to ice dynamics. These 

include basal units lacking evidence for clear internal ice-sheet layering, continuous and 

discontinuous internal layers, highly disrupted internal layers and low-reflectivity structures 

�Z�K�L�F�K�� �U�H�V�H�P�E�O�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �R�U�� �µ�W�R�U�Q�D�G�R�V�¶�� �>Karlsson et al., 2009]. The latter are visible in 

radargrams throughout the study area, in a variety of radar flight-line orientations. An example 

�R�I���W�K�H�V�H���µ�Z�K�L�U�O�Z�L�Q�G�V�¶���L�V���V�K�R�Z�Q in Figure 6.9 (although also visible in Figures 6.6, 6.7, 6.10 and 

6.11 the larger scales used in these figures, which were chosen for regional analysis, are not 

�D�S�S�U�R�S�U�L�D�W�H���I�R�U���P�D�U�N�L�Q�J���W�K�H���O�R�F�D�W�L�R�Q�V���R�I���µ�Z�K�L�U�O�Z�L�Q�G���I�H�D�W�X�U�H�V�¶�������,�Q���)�L�J�X�U�H��6.9, and indeed, within 

numerous other radargrams investigated during this study, englacial layering is disrupted and 

occasionally obliterated by �W�K�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶���� �Z�K�L�F�K�� �K�L�J�K�O�L�J�K�W��vertical to sub-vertical low-

reflectivity zones. These features are believed to represent the complex response of the radar 

signal to high-amplitude buckling of layers within the ice sheet (i.e. physical ice sheet features 

that present in the radargrams as whirlwinds [Holschuh et al., 2014�@�������$�V���V�X�F�K�����W�K�H���µ�Z�K�L�U�O�Z�L�Q�G�V�¶��

can be used to identify and map zones of buckled and disrupted layering. 

 Basal ice units have also been detected above the bed in multiple radargrams (e.g. 

Figures 6.7, 6.8 and 6.9). These basal units, identified throughout the study area, are clearly 

distinguishable from the bed and the upper ice column, where they can often be sub-divided 

vertically into two distinct sub-units, where the boundary between them is marked by an upper 

reflective interval. Although their formation requires further investigation, Knight [1997] and 

Bingham et al. [2015] have suggested that their form could be attributable to changes in ice 

fabric, or contrasting physical, dielectric properties associated with a glacial/interglacial 

palaeoclimatic switch.  

 

Horseshoe Valley Trough 

Airborne RES transects reveal a number of internal features within Horseshoe Valley ice flow. 

Figure 6.6 shows that basal ice units up to 450 m thick have been recorded above the subglacial  



125 
 

 

 

 

 

 

 
Figure 6.9. (a) Selected internal features in radio echo sounding flight line 11; the arrows 
indicate a processing artefact. (b) Digitised basal topography (brown), lower basal ice unit 
(blue), and upper basal ice unit (purple) as well as internal stratigraphic features (black for 
observed, dashed for inferred, and purple for best estimate); the green polygons show the 
location of internal whirlwinds. The secondary axis highlights satellite-derived surface ice flow 
velocities in red from MEaSUREs [Rignot et al., 2011a]. 
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Figure 6.10. (a) Location of lines 1�±4 in relation to the bed topography, derived from Bedmap2 

[Fretwell et al., 2013]. (b) Three-dimensional schematic diagram placing RES lines into 

approximate geographic/spatial context to highlight the morphology of Independence and 

Ellsworth Troughs, as well as the development of internal stratigraphy down flow. (c) 

Interpreted gross-scale structure of the two troughs approximately marked by red dashed lines 

and flow direction arrows. Conformable layering is present above the highland plateaus which 

define the troughs. The gradual inclination in bed elevation from Independence Trough to 

Independence Hills, coupled with the presence of basal ice zones and a thin ice column, 

suggests that there has been no recent transfer of ice from Independence Trough into Horseshoe 

Valley Trough.  
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Figure 6.11. (a) Location of lines 5�±10 in relation to the bed topography, derived from 
Bedmap2 [Fretwell et al., 2013]. (b) Three-dimensional schematic diagram to highlight the 
morphology of Horseshoe Valley, Independence and Ellsworth Troughs in the upper Institute 
Ice Stream catchment, as well as the development of internal stratigraphy down flow. (c) 
Interpreted gross-scale structure of the three troughs approximately marked by the red dashed 
lines and flow direction arrows. Conformable layering is present above the highland plateaus 
which define the troughs and in the upper 500 m of ice within Horseshoe Valley Trough. 
Disrupted isochrones are restricted to the deeper ice of Horseshoe Valley Trough and within 
Independence and Ellsworth Troughs. 
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mountain ranges that delimit the trough. These units can be traced down flow on the south-

western side of the trough for at least 110 km where they are clearly visible at a maximum depth 

of 500 m below sea level, but they cannot be found any more centrally or deeper inside the 

trough itself. 

Within the trough, discontinuous ice layers dominate the mid to lower ice column, 

where the most disturbed and buckled englacial layers - with an ILCI value of 0 - 0.06 are found 

down the north east flank of the trough (Figure 6.6, Figure 6.12) (as discussed in section 6.1, 

internal layers cannot be resolved within the south-western side of the trough, as the aircraft 

took off and/or landed at this locality). Continuous and parallel isochrones sit conformably 

above these deeper, more disrupted and buckled ice layers, where a 500 m thick sequential ice 

package, ~20 km wide is recorded in the upper 20% of the ice column (Figure 6.6, 6.13). These 

continuous layers can be traced down flow in numerous radargrams, and through ILCI analysis, 

for at least 90 km, where the layers become increasingly apparent and numerous as the basal 

topography becomes elevated and the trough margins widen (Figures 6.10 - 6.13).  

Although hard to distinguish precisely in all RES transects due to the scale at which 

they are presented in Figures 6.6 and 6.11 �O�D�U�J�H�O�\���Y�H�U�W�L�F�D�O���µ�Z�K�L�U�O�Z�L�Q�G�¶���I�H�D�W�X�U�H�V���D�U�H���D�O�V�R���Y�L�V�L�E�O�H��

within the ice flow of Horseshoe Valley Trough. Within the better resolved northern side of the 

�L�F�H�� �I�O�R�Z���� �W�K�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �D�S�S�H�D�U�� �W�R�� �V�S�D�Q�� �W�K�H�� �H�Q�W�L�U�H�� �K�H�L�J�K�W�� �R�I�� �W�K�H�� �L�F�H�� �V�K�H�H�W�� �F�R�O�X�P�Q�� ���D�O�W�K�R�X�J�K��

processing steps largely prevent the upper 200 samples (top ~500 m) from being imaged), 

where they cut through discontinuous internal layering. The�V�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶ generally tend to 

extend vertically downwards from the surface or near-surface, where they are sometimes curved 

or sub vertical (see Figure 6.9 for a detailed example). A similar morphology is recorded on a 

�V�P�D�O�O�H�U���V�F�D�O�H�� �Z�K�H�U�H�� �W�K�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �L�Q�W�H�U�I�D�F�H�� �Z�L�W�K���W�K�H�� �X�S�S�H�U�� �E�R�X�Q�G�D�U�\�� �R�I�� �W�K�H�� �E�D�V�D�O�� �L�F�H�� �X�Q�L�W�V, 

for example on the flanks of Horseshoe Valley Trough [Ross and Siegert, 2014].  

 

Independence Trough  

RES of Independence Trough has revealed strong radar returns within the top 50% (800 m) of 

the ice column, where ice within the trough is dominated by disrupted englacial stratigraphy 
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Figure 6.12. Results of the full-depth Internal Layer Continuity Index (ILCI) from several flight 
lines over the Institute Ice Stream upper catchment near the Ellsworth Mountains. Background 
shows surface ice-flow velocity from MEaSUREs [Rignot et al., 2011a] in grey scale, 
superimposed onto RADARSAT mosaic [Haran et al., 2006]. Low ILCI values (<0.06), 
representing disrupted englacial layering, dominate ice flows within Horseshoe Valley Trough 
(HVT), Independence Trough, and Ellsworth Trough as well as the Institute Ice Stream. High 
ILCI values (>0.06), representing continuous layering, are located above the subglacial 
highlands which delimit the three troughs. 
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Figure 6.13. Internal Layer Continuity Index (ILCI) results from 100 trace moving windows, 
partitioned �E�\���G�H�S�W�K���U�D�Q�J�H�V�����R�U���³�O�D�\�H�U�V�´�����D�E�E�U�H�Y�L�D�W�H�G���D�V���³�O�\�U�´�����S�U�R�J�U�H�V�V�L�Y�H�O�\ downward through 
fifths of the ice column. Background shows surface ice-flow velocity from MEaSUREs [Rignot 
et al., 2011a] in grey scale, superimposed onto RADARSAT mosaic [Haran et al., 2006]. IIS = 
Institute Ice Stream, BIR = Bungenstock Ice Rise, and MIS = Möller Ice Stream. Figure adapted 
from Bingham et al. [2015].  
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(Figure 6.7) which repeatedly exhibits an ILCI index <0.06 (Figure 6.13). Figures 6.7, 6.10 and 

6.11 demonstrate the abundance of this stratified englacial layer buckling across flight lines of 

all orientations. These figures also show that the buckled ice layers become progressively less 

discernible down valley, presumably as a function of enhanced ice flow and associated intense 

disruption of englacial stratigraphy on approach to the fast-flowing IIS trunk. Although low 

ILCI values dominate the majority of the ice flow within Independence Trough, ILCI values in 

excess of 0.06 (reflecting continuous layering) are recorded within the upper reaches of the 

trough, where they are often co-incident with the subglacial plateaus which have a relatively 

smooth basal topography (Figures 6.10, 6.11 and 6.12). 

Although basal ice units are not found within the centre of the Independence Trough, 

they have been recorded at the trough margins, where the ~100 m thick packages drape over the 

subglacial highlands, spanning an elevation range of 1250 m. Similar to Horseshoe Valley 

�7�U�R�X�J�K���� �D�� �G�H�Q�V�H�� �Q�H�W�Z�R�U�N�� �R�I�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �L�V�� �D�Oso observed in the ice flow contained within 

�,�Q�G�H�S�H�Q�G�H�Q�F�H�� �7�U�R�X�J�K���� �7�K�H�V�H�� �µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �D�U�H�� �I�R�X�Q�G�� �D�E�R�Y�H�� �W�K�H�� �K�L�J�K�H�U�� �H�O�H�Y�D�W�L�R�Q�� �V�X�E�J�O�D�F�L�D�O��

mountain ranges and associated basal ice units, where they have been located in ice as thin as 

600 m, and in ice as thick as 1500 m.   

 

Ellsworth Trough and Pirrit Highlands 

The length of the Ellsworth Trough is dominated by sub-parallel, buckled isochrones which are 

visible within the uppermost 1000 m of the ice column, to a maximum depth of 250 m below 

current sea level, beneath which the radar did not resolve internal layering due to signal 

attenuation (a function of the 2600 m+ ice thickness and the likely existence of warm ice within 

the lower ice column). ILCI results reveal the greatest percentage of low to intermediate ILCI 

values (0 �± 0.6) within the ice flows of Ellsworth Trough (Figures 6.12 and 6.13). This 

quantitatively confirms that the Ellsworth Trough contains the most abundant unresolved and 

disrupted internal stratigraphy of all the south-western IIS tributaries. Although continuous 

layering is clearly distinguishable above the highland plateau of the Pirrit Highlands (Figures 

6.8, 6.11 and 6.12), which delimit the south-western extent of the trough, very few continuous 
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layers are found within the Ellsworth Trough itself. This is particularly evident from the full -

depth ILCI results (Figure 6.12), where values <0.6, representing disrupted englacial layering 

are found down the centre of the trough, whilst intermediate to high ILCI values (0.6 �± 0.10) are 

recorded near the trough margins.  

Beneath the surface-conformable layers of the Pirrit Subglacial Highlands basal ice 

units are clearly visible down the length of mountainous ridges (Figure 6.11), where they 

typically reach thicknesses in excess of 200 m, with a maximum thickness of 850 m (recorded 

in a small trough within the upper reaches of the highland area). The most frequent and elongate 

�µ�Z�K�L�U�O�Z�L�Q�G�V�¶�� �R�I�� �W�K�H entire airborne RES study are also found in Ellsworth Trough, where the 

nearly-�Y�H�U�W�L�F�D�O�� �µ�Z�K�L�U�O�Z�L�Q�G�¶�� �I�H�D�W�X�U�H�V�� �G�L�V�S�O�Dy longitudinal continuity down flow. Although 

smaller, more i�Q�I�U�H�T�X�H�Q�W���D�Q�G���O�H�V�V���G�L�V�W�L�Q�F�W�L�Y�H�����µ�Z�K�L�U�O�Z�L�Q�G�¶��features are also resolved over some 

areas of the Pirrit Highlands.  

 

6.2.4 Surface velocity and surface features  

Satellite remotely-sensed ice velocity data [Rignot et al., 2011a] reveal spatially variable ice 

flow speeds within the upper catchment of the IIS tributaries, in and around the Ellsworth 

Mountains (Figure 6.2c). The slowest ice flow speeds of <9 m a-1 are recorded above high 

elevation subglacial plateaus and subglacial mountain ranges, whilst faster ice flow is recorded 

within the deep subglacial troughs which feed the IIS trunk, where current flow speeds reach 

415 m a-1. Ice within Horseshoe Valley Trough maintains the slowest average flow speeds of 12 

m a-1 (Figure 6.6), permitting the preservation of early-mid Holocene ice. Ages quoted here and 

henceforth are approximate and estimated using age-depth modelling calculations from the 

Bungenstock Ice Rise, which suggest that ice at 40% ice thickness is ~4000 years old [Siegert et 

al., 2013], as there is currently no dating control across the upper IIS catchment. Ice in 

Independence Trough currently reaches flow speeds of up to 35 m a-1 (Figure 6.7). Assuming 

�D�Y�H�U�D�J�H���I�O�R�Z���V�S�H�H�G�V���•�������P���D-1 it can be deduced that ice in Independence Trough is unlikely to 

contain ice deposited earlier than the mid-Holocene. Even greater advection of early to mid-

Holocene ice is expected within Ellsworth Trough where tributary flow speeds of ~70 - 130 m 
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 a-1 are currently recorded. Here, distinctive surface flow stripes, orientated parallel to ice flow, 

are clearly identified on satellite imagery and ice velocity maps (Figure 6.7c, 6.7d) Recent 

investigations by Glasser and Gudmundsson, [2012] and Glasser et al. [2015] suggest that these 

longitudinal features are likely to be the surface expression of simple shear and lateral 

compression, in this case originating from the confluence point of tributary flows entering 

Ellsworth Trough.  Fast flow speeds of 38-129 m a-1 are also recorded throughout the Pirrit 

Lowlands where ice streams over thick basal ice sequences (Figure 6.8).  

 

6.3 Discussion  

6.3.1 Current configuration of the Institute Ice Stream and its tributaries 

In its present configuration, two main tributaries feed the upper catchment of the IIS; these 

tributaries carry ice along the Independence and Ellsworth troughs to the main trunk of the IIS 

and ultimately the FRIS, entraining the flow of smaller tributaries, including ice that has 

originated from Horseshoe Valley.  

Horseshoe Valley Trough is characterised at its upper end by the Horseshoe Valley 

overdeepened basin, where maximum measured ice thickness is in excess of 2000 m. This ice 

thickness is not maintained down valley, reducing to ~1400 m, and later ~750 m, when the ice is 

driven up topographic steps in the bed near the valley mouth (Figure 6.6). Surface-conformable 

ice layers dominate the upper 20% of the ice column in all transects; this continuity reflects the 

current slow flow speeds within Horseshoe Valley Trough which amount to ~12 m a-1. 

However, disrupted internal layers visible within RES transects displayed in Figure 6.6 and 6.11 

and in the % layer ILCI plot (Figure 6.13) imply former enhanced ice flow within the trough. As 

surface-conformable stratigraphy blankets the buckled ice layers it can be deduced that at some 

time the faster-than-present ice flow experienced a switch-off, fossilising the enhanced-flow 

features (buckled layers). The continuous isochrones beneath the surface of Horseshoe Valley 

Trough, combined with the preservation of conformable stratigraphy and basal ice zones above 

the subglacial mountains that delimit the trough, provide evidence for topographically confined, 

and relatively stagnant isolated ice flow throughout the Holocene. RES evidence from 
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Horseshoe Valley Trough therefore suggests that the switch from enhanced to stagnant flow 

occurred pre-Holocene, and that enhanced ice flow in this system is likely to pre-date the major 

changes in regional ice flow associated with the shutdown of ice streaming across the 

Bungenstock Ice Rise [Siegert et al., 2013]. 

Confined by steep mountain ranges along its length, the ~2200 m thick ice flow within 

Independence Trough is dominated by buckled ice layers which are visible in the top 50% of the 

ice column, within flight lines of all orientations (Figures 6.10, 6.11 and 6.11). These buckled 

layers become less discernible on approach to the main IIS trunk (Figures 6.10 and 6.11), as a 

function of enhanced ice flow speeds and increased strain rates. Unlike the ice within Horseshoe 

Valley Trough, there is no evidence for recent continuous englacial layering within 

Independence Trough, even though similar flow speeds of 15 m a-1 are recorded within the 

upper reaches of the trough.  This suggests that the buckled ice layers within Independence 

Trough are younger than those in Horseshoe Valley Trough, implying a more recent slow-down 

of ice flow here.  

Low ILCI values are recorded throughout the topographically constrained Ellsworth 

Trough, where discontinuous and buckled ice layers dominate the uppermost 1000 m of the ice 

column (note that detailed internal layering is poorly resolved at greater depths). These 

disrupted layers can be found in radargrams of all orientations (Figures 6.7, 6.10, 6.11 and 

6.12). This extensive deformation is largely attributed to the relatively high ice surface flow 

speeds of 70 - 130 m a-1 (calculated from Rignot et al. [2011a]). Surface flow stripes correlate 

well to ILCI values, where the lowest ICLI values and surface flow stripes are recorded near the 

ice stream margin (Figures 6.7. and 6.12) where shear stress is high. A similar phenomenon is 

found in Whillans and the Carlson Inlet Ice Stream [Raymond et al., 2006; King, 2011], as well 

as the IIS towards its upper confluence with the MIS [Bingham et al., 2015] where the greatest 

disruption of internal layering is found along the lateral shear margins. These features define a 

constant direction of shear within the ice of Ellsworth Trough, which, given the topographic 

confinement of the ice [Ross et al., 2014], is likely to have existed over significant intervals of 

geological time. 
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The Pirrit Lowlands represent an ice tributary which is sufficiently wide to be relatively 

unconstrained by the subglacial topography. This allows ice from the upper IIS catchment to 

flow along a more or less straight flow path towards the local grounding line of the Filchner-

Ronne Ice Shelf, which enables the internal layering and basal ice packages in the centre of the 

ice flow to remain relatively undisturbed over long distances. Higher ILCI values are recorded 

at the margins of the ice flow, where increased longitudinal strain is exerted by the more 

elevated subglacial topography bordering the Ellsworth Mountains and Pirrit Hills. The nature 

of ice flow through the Pirrit Lowlands indicates stable flow conditions throughout the 

Holocene, where high flux rates have consistently contributed to the main flow of IIS.  

 

6.3.2 Evidence for former enhanced ice flow 

Satellite-derived ice flow velocity measurements of the upper IIS catchment by Rignot et al. 

[2011a] reveal that enhanced ice flow conditions are only currently recorded within the largest 

tributary ice stream, which flows through the Ellsworth Trough. Here, airborne RES surveys 

have recorded fast flow features throughout the entire ice column, which include intensely 

buckled and discontinuous ice layers as well as �µ�Z�K�L�U�O�Z�L�Q�G�V�¶. Combined, these features strongly 

suggest that enhanced ice flow conditions have existed in the Ellsworth Trough since at least the 

mid-Holocene (as older ice is likely to have been advected towards the grounding line by fast 

ice flow). Similarly buckled and disrupted isochrones in the Independence Trough ice flow also 

suggest former enhanced ice flow conditions in the upper IIS tributary. However, as the present 

day ice flow speeds are much slower than those supported by the larger Ellsworth Trough and 

indeed too slow to produce such disrupted and discontinuous internal layering it is expected that 

the ice flow in Independence Trough has recently began to slow down.   

 

6.3.3 Evidence for ice flow reorganisation 

Although ice flowing through the Ellsworth and Independence troughs provide evidence 

for former enhanced ice flow, regional airborne RES analysis provides no evidence for former 

ice flow reorganisation. Continuous stratigraphy and thick basal ice zones above neighbouring 
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subglacial mountain ranges suggest that both ice flows have remained topographically 

constrained to the present day, during periods of both slower and more enhanced ice flow. This 

unique topographic confinement limits the potential for water piracy or ice-flow reorganisation 

in the upper IIS catchment, as has been speculated in other ice streams, most notably for the 

currently stagnant Kamb Ice Stream [Jacobel et al., 1996; Anandakrishnan and Alley, 1997] 

(see Chapter 2, section 2.6.2), though it does permit on-and-off streaming of tributary flow 

through the Independence and Ellsworth Troughs. 

Although disrupted isochrones are qualitatively and quantitatively recorded in the ice 

flows of Horseshoe Valley Trough, the presence of a 500 m thick sequence of surface 

conformable stratigraphy beneath the ice surface implies that the ice has not experienced 

enhanced flow for some time. Current ice flow speeds of 7 m a-1 - 16 m a-1, combined with the 

thick conformable ice sequence suggest that the ice in Horseshoe Valley has remained slow 

flowing since at least the mid-Holocene, allowing the preservation of much older, buckled and 

disrupted isochrones at depth. As Horseshoe Valley ice flow is topographically confined by a 

number of nunataks and mountain ranges it is unlikely that the ice flow in the upper reaches of 

Horseshoe Valley migrated during this time. 

 

6.3.4 Former ice-sheet configuration, with respect to the Bungenstock Ice Rise 

Tectonically-controlled bedrock folds beneath the IIS catchment [Jordan et al., 2013] govern 

the location of deep trough systems and high mountain ranges in and around the Ellsworth 

Mountains, which facilitate channelised ice flow from the WAIS interior to the FRIS in the 

Weddell Sea. Bingham et al. [2015] suggested that the current configuration of topographically-

confined IIS tributary flows also reflects the spatial configuration of ice flow throughout the 

Holocene (and possibly earlier). Although the topographic constraints of the IIS tributaries 

�P�H�D�Q�� �W�K�D�W�� �W�K�H�\�� �D�U�H�� �X�Q�D�E�O�H�� �W�R�� �P�L�J�U�D�W�H���� �E�X�F�N�O�H�G�� �L�V�R�F�K�U�R�Q�H�V�� �D�Q�G�� �µ�Z�K�L�U�O�Z�L�Q�G�¶�� �I�H�D�W�X�U�H�V�� �Z�L�W�K�L�Q�� �L�F�H��

flows of the Horseshoe Valley and Independence troughs evidence former enhanced ice flow in 

presently slow-flowing tributaries, indicating a switch-off of past enhanced ice flow. Enhanced 

ice flow through Independence and Ellsworth troughs during the mid- to late-Holocene would 
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have been conducive to driving ice flow across the IIS and the region now covered by 

Bungenstock Ice Rise (Figure 6.14), making these troughs strong candidates for contributing the 

ice flux necessary to facilitate paleo-ice streaming across what is currently a slow flowing ice 

rise [Siegert et al., 2013].  The occurrence of buckled and disrupted layering at depth in 

Independence Trough supports this suggestion by providing evidence for former enhanced flow 

in a trough where ice flow is now much slower.  

As surface-conformable stratigraphy dominates the upper ice column within Horseshoe 

Valley it is unlikely that flow from Horseshoe Valley Trough contributed significantly to the 

streaming flow over the Bungenstock Ice Rise. This is likely to be a function of the 

topographically constrained nature of Horseshoe Valley Trough, as the high Ellsworth 

Mountains to the south east largely block the ingress of the WAIS in this area, and subglacial 

topography at the trough mouth encourages the diversion of flow into Hercules Inlet (Figure 

6.14b). However, as buckled ice layers have been preserved in the mid to lower half of the ice 

column in Horseshoe Valley Trough, it is proposed that changes within the flow of this tributary 

may have occurred earlier than the mid-Holocene. Assuming advection of the buckled englacial 

layers at a current average velocity of 12 m a-1, early Holocene buckles would still be present in 

Horseshoe Valley Trough. The late-Holocene deceleration of flow across the Bungenstock Ice 

Rise, previously inferred by Siegert et al. [2013], may therefore represent just one relatively 

local component of wider regional changes to ice flow that have occurred across the IIS and 

MIS catchments as the WAIS thinned after the LGM. Stagnation of Bungenstock Ice Rise is the 

main hypothesis for the present-day configuration of IIS [Bingham et al., 2015]. The resultant 

reorganisation of flow and switch-on of the main IIS trunk would have re-routed and/or 

switched off ice flow exiting the deep trough systems of the IIS upper catchment (e.g. 

Independence Trough), and led to grounding line migration and the diversion of flow across the 

FRIS, in an ice flow configuration akin to that we see today (Figure 6.14).  
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Figure 6.14. Schematic model of ice sheet change with respect to the Bungenstock Ice Rise 
(BIR). (a) The current glaciological situation with ice flow indicated by arrows. (b) Mid-
Holocene ice sheet, where north-eastward ice flow dominates the region, crosscutting the 
present-day trunk of the Institute Ice Stream. (c) Late Holocene (as now) ice sheet flow 
described by Siegert et al. [2013] in which ice flow over Bungenstock Ice Rise becomes 
stagnant, thus leading to the present-day ice sheet configuration. (d) Last Glacial Maximum ice 
sheet hypothesised by Siegert et al. [2013]. The interpretation in Figure 6.14b refines flow paths 
and their relative ages (mid-Holocene instead of LGM), as well as indicating minimal flow from 
Horseshoe Valley Trough towards the Bungenstock Ice Rise. 
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6.4 Summary 

This chapter defines the current configuration of the IIS and its tributaries and provides 

evidence for former enhanced ice flow and ice flow reorganisation in the Weddell Sea Sector of 

Antarctica. Airborne RES investigations of the internal stratigraphy of three tributaries of the 

IIS sourced from and transecting the Ellsworth Subglacial Highlands provide evidence for 

heterogeneous ice stream behaviour and Holocene flow dynamics. It is likely that the 

Independence and Ellsworth troughs acted as source areas for the mid- to late-Holocene 

enhanced flow recorded in flow stripes across the Bungenstock Ice Rise [Siegert et al., 2013]. 

The internal stratigraphy of ice flowing along Independence and Ellsworth troughs suggests that 

they may have acted independently of one another, undergoing asynchronous enhanced ice flow 

or a slow-down in ice streaming. The earliest evidence for enhanced ice flow, believed to have 

occurred ~4000 years ago [Siegert et al., 2013] is found in Horseshoe Valley Trough, where 

buckled and discontinuous isochrones are surveyed beneath a 500 m thick sequence of parallel, 

surface conformable isochrones. Evidence for changing ice flow velocities, possibly occurring 

more than ~400 years before present [Siegert et al., 2013], can be found within the 

topographically-confined Independence and Ellsworth troughs where strongly-deformed 

isochrones represent former enhanced ice flow through each trough, which would have allowed 

ice to traverse the main trunk of the IIS and flow over the region now covered by Bungenstock 

Ice Rise.  

These observations are consistent with the hypothesis that the LGM and Holocene 

drainage pathways within the Weddell Sea sector of the WAIS were different from those of the 

present-day [Larter et al., 2012; Siegert et al., 2013] and that they indicate dynamic changes in 

ice flow velocity, which affected the interior parts of the Weddell Sea sector.  
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CHAPTER 7 

Radar detected englacial debris 

 

In this chapter strong englacial reflectors identified in GPR, airborne RES and ground RES will 

be mapped and analysed in 2D and 3D to constrain the location, form and approximate volume 

of englacial debris in and around Horseshoe Valley. Transects will be compared to pre-existing 

datasets to determine debris source areas as well as processes of debris entrainment. 

Implications for englacial debris transportation in the Weddell Sea sector of West Antarctica 

will also be discussed.  

 

Radar detected englacial debris objective 

Investigate debris entrainment mechanisms in the Weddell Sea sector of the West Antarctic Ice 

Sheet. 

 

Research questions 

1) Can geophysical methods detect debris in ice in and around Horseshoe Valley? 

2) How much englacial debris is contained within Horseshoe Glacier? 

3) What are the controls on debris entrainment and transportation in Antarctica? 

 

7.1 Introduction  

Although recent advances in ice penetrating radar data acquisition and processing have enabled 

englacial sedimentary structures to be identified in alpine-type glaciers [Goodsell et al., 2005; 

Dunning et al., 2015] and surge-type glaciers (characteristic of the Svalbard archipelago 

[Boulton, 1970; Woodward et al., 2003a; Hambrey et al., 2005; Murray and Booth, 2010; 

Sevestre et al., 2015]), very few studies have documented englacial debris in Antarctica. Whilst 

this is largely a function of radar resolution, and field site accessibility, a lack of detailed 

surveys has suppressed our understanding of debris sources and debris entrainment mechanisms 

beneath large ice sheets, as well as debris transport pathways through the ice. As debris sources 
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can alter frictional stress at the glacial bed and modify ice flow speeds [Bell et al., 1998], 

change ice flow direction through long-term erosive processes [Harbor et al., 1988] and transfer 

essential nutrients from continental sources to the Southern Ocean [Death et al., 2014; 

Hawkings et al., 2014] (Chapter 2) it is now critical to examine the controls on englacial 

sediments in West Antarctica.  

 In order to analyse englacial debris reflectors on both local and regional scales, this 

chapter will examine airborne and ground RES data, collected in and around Horseshoe Valley, 

as well as detailed step-and-collect mode GPR returns, surveyed in front of Patriot and 

Independence Hills. Figure 7.1 details the location of these survey lines where strong englacial 

reflectors within RES transects have been marked by black circles. A further airborne RES 

profile, collected across the Evans Ice Stream will also be examined to determine the wider 

controls on debris sources, entrainment mechanisms and debris transport pathways in the 

Weddell Sea sector of West Antarctica.  

 

7.2 Results 

7.2.1 Airborne radio-echo sounding of Horseshoe Valley 

Pulse and SAR processed radargrams (collected by Dr. Neil Ross from the University of 

Newcastle and collaborators during a traverse of the IIS and MIS in 2010/2011), displayed in 

Figures 7.2, 7.3 and 7.4, detail a number of distinct englacial reflectors above basal topographic 

features. Two of these highly reflective, upwards dipping englacial structures, termed R1 and 

R2 are highlighted in Figure 7.2, where each reflector is distinct from the largely echo-free ice 

that surrounds them. R1 denotes the smaller of the two reflectors (which is only visible in flight 

line 14, as the other flight lines did not extend across Horseshoe Valley), where the strong 

reflector extends over 500 m through the ice column. This reflector dips at an angle of 35 - 40° 

from vertical, where the englacial structure stops short of the glacier surface by ~390 m. 

Although R2 exhibits similar reflection characteristics to R1, this second reflector represents a 

much larger englacial feature, where several steeply dipping diffractors (with a dip angle of ~60 

- 65° from vertical) extend from the subglacial bed towards the ice surface, where the reflector  
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Figure 7.2. Englacial reflectors recorded in pulse-processed airborne RES transects across 
Horseshoe Valley. R1 is situated in front of Patriot Hills, where the reflector extends from 
the bed, but fails to reach the ice surface, whilst R2 is recorded in front of Independence 
Hills, where reflectors can be traced from the bed up towards the BIA surface, where 
moraine ridges elevate the surface topography.  
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Figure 7.3. Englacial reflectors R3 and R4 recorded in front of Patriot Hills in three SAR-
processed airborne RES flight lines, where ice flows through Horseshoe Valley, towards the 
local grounding line. Note that this processing technique fails to resolve the upper ~200 m 
of the ice column and nunataks. 
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Figure 7.4. Distinct englacial features in SAR processed airborne RES flight lines 19, 20 and 21 
(location has been marked in Figure 7.1), where ice flow is into the page. Grey arrows indicate 
processing artefacts.  R5 represents a distinct englacial feature that extends from the bed in each 
radargram.  
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intersects a 22 m high moraine ridge in front of Independence Hills (annotated in Figure 7.2b). 

Whilst adjacent radargrams reveal that the steep angle of R2 is preserved down-flow, Figure 7.2 

also demonstrates how the reflector geometry varies with depth through the ice column, and 

with distance from the exposed nunataks that define Independence Hills. 

Although R1 and R2 document upwards dipping englacial reflectors near the ice sheet 

surface, Figure 7.3 reveals strong englacial reflectors further down the ice column, ~1.4 km 

below the surface of Horseshoe Glacier, and over 750 m below present day sea level. In this 

figure, a third highly reflective englacial feature, termed R3, extends over 200 m from the 

glacial bed; towards the centre of Horseshoe Glacier in three airborne RES transect lines. 

Although the reflector remains a similar shape and size down flow, Figure 7.3 shows how the 

reflector dip angle changes from ~65° to 75° (from vertical) over 4.5 km (between lines 16 and 

17). In the last airborne RES flight, line 18, R3 dips at ~86° (from vertical), where R3 is now 

disconnected from the ice/bed interface. A fourth distinctive englacial reflector is also recorded 

in flight line 18 (Figure 7.3), where R4 extends over 300 m through the ice, at a dip angle of 

~87° from vertical. 

Figure 7.4 details the last group of strong englacial reflectors to be recorded within 

airborne RES traverses of Horseshoe Valley Trough (Figure 7.1). These radargrams reveal a 

fifth set of strong englacial reflectors, which extend from a subglacial bedrock bump, towards 

the centre of the ice flow at angles of ~55° - 63° from vertical. Whilst Figure 7.4 documents the 

down-ice persistence of R5 (where the reflector varies in shape and size with distance down 

valley), Figure 7.5 highlights the relationship between R5, the subglacial bed and numerous 

weak internal reflectors that represent isochronal layers and whirlwind features. This figure 

shows how R5 extends beneath buckled and disrupted englacial stratigraphic layers in flight 

lines 19b and 20b, where folded isochrones are recorded above the strong englacial reflector. 

Whilst these two radargrams reveal similar features, flight line 21b (traversed ~2500 m from the 

first transect line �± 19b) records nearly straight and parallel internal stratigraphic layers, which 

are more conformable with the subglacial bed topography. In this last flight line R5 appears to 

be disconnected from the ice/bed interface (Figures 7.5c and 7.5f).   
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Figure 7.5. Detailed investigations of englacial reflector R5 in 2D radargrams. Boxes a-c reveal 
SAR-processed airborne RES transects (visualised in full in Figure 7.4), which are digitised in 
d-f to show prominent englacial features (black for observed, dashed for inferred and purple for 
best estimate), the basal topography (brown), strong englacial reflector R5 (dark brown) and 
englacial whirlwind features (green).   
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7.2.2 Ground penetrating radar surveys of Horseshoe Valley 

Detailed, high-resolution step-and-collect mode GPR transects, collected during the austral 

summer of 2012/2013 have also revealed a number of distinct englacial features beneath BIAs 

and their associated moraine sequences in Horseshoe Valley. Figure 7.1 shows the geographic 

location of these survey lines, where the PulseEKKO system (detailed in Chapter 4) collected 

radar returns within Patriot Hills main embayment, and along the moraine system in front of 

Independence Hills. 

 

Patriot Hills main embayment 

Figure 7.6 details a number of GPR lines, surveyed across Patriot Hills main embayment. These 

transects reveal the surface of Horseshoe Glacier, and the sloping bed topography that extends 

away from Patriot Hills, as well a number of englacial stratigraphic features and hyperbolic 

radar returns. Although stacked and inclined isochrones, representing former ice sheet surfaces 

[Turney et al., 2013] are visible at the start of each transect line (Figure 7.6), where dip angles 

record BI flow trajectories (see Chapters 2 and 5), it is difficult to trace englacial stratigraphic 

layers near the mountain front, where the surface is covered by BI moraine accumulations 

(detailed in Chapter 3). Hyperbolic radar returns dominate this section of the radargram, where 

the returns represent point-like objects imaged by the radar at different angles [Daniels, 2004]. 

Figure 7.7b shows how these returns are often grouped into near vertical bands, which extend 

from the subglacial bed, all the way up to the surface, where BI moraine systems elevate the 

local topography.  

 

Independence Hills moraine system 

During the austral summer of 2012/2013 four GPR transects were also surveyed across the 

distinctive hooked moraine systems which lie at the foot of Independence Hills (see Chapter 3, 

section 3.6.2 for an introduction to Independence Hills moraine system). Figure 7.8 documents 

the subglacial topography and englacial stratigraphy of the largest transect line (IH3) �± where 

the PulseEKKO system was manually towed over the debris-covered surface, in a survey line 
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Figure 7.6. GPR transects collected in step-and-collect mode across Patriot Hills main 
embayment. A glacially eroded ice/bed interface is recorded beneath moraine sequences in front 
of Patriot Hills. 
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Figure 7.7. GPR transect line P1, surveyed across Patriot Hills BIA and Patriot Hills BI 
moraine sequences (a), and annotated in (b) to highlight prominent features (where 
hyperbolic reflectors are coloured green, isochrones are coloured black and radar reflections 
from surface water are coloured blue). Brown polygons define bedrock and unconsolidated 
sediment whilst the dashed line in a) and b) represents the junction between two radargrams. 

  



151 
 

 

 

 

 

Figure 7.8. GPR transect IH3, collected along BI moraine sequences in front of 
Independence Hills (a), and annotated in (b) to highlight prominent features, where radar 
returns are coloured green if they are hyperbolic, black when they represent continuous 
isochrones and orange when they reveal straight and parallel englacial structures. Grey 
polygons reflect clean ice incursions, whilst bedrock is highlighted by a brown polygon.   
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orientated approximately parallel to the main mountain ridge (see Figure 7.1). Hyperbolic radar 

returns and the point sources that they represent dominate this transect line, where these 

distinctive subsurface features help to reveal straight and parallel englacial structures, that 

extend from the ice/bed interface, towards elevated BI moraine sequences. Although it is 

difficult to detect and trace englacial stratigraphic layers beneath the thick BI moraine 

accumulations, a set of straight and parallel isochronal layers are recorded just beneath the 

surface, approximately 100 m along transect IH3 (Figure 7.8b). As these layers are recorded 

within a zone of clean ice, which is separated from the main flow of ice (which contains a 

number of steeply dipping structures and point-like reflectors), it is likely that this zone of ice, 

and indeed another region of clean ice (located ~350 m along the transect line) evidence exotic 

ice flows. By analysing geomorphological features along Independence Hills it is suggested that 

these ice flows are derived from hanging valleys near Mount Simmons, where the local clean 

ice flows cut across the main flow of debris-rich ice, which is being driven towards the steep 

ridge of Independence Hills by compressive BI flow.   

 

7.2.3 Other geophysical surveys 

Horseshoe Valley ground and airborne RES 

In order to understand the regional occurrence of strong englacial reflectors in Horseshoe 

Valley, Figures 7.9 and 7.10 document ground RES surveys across Horseshoe Glacier, which 

were originally collected by Dr. Andrés Rivera (Centro de Estudios Científicos, Chile) to detect 

and image basal topographic features. Two strong internal reflectors are recorded near the 

ice/bed interface in Profile A1 (Figure 7.9), where the reflectors are located approximately 1180 

m and 1690 m along the transect, at depths of ~1300 m and ~1000 m below the ice sheet 

surface. Just like the deep englacial features recorded in airborne RES transects, these strong 

internal features also exhibit similar reflection strengths to the bed, where the reflectors are 

angled upwards, and towards the centre of Horseshoe Valley. In a similar manner to R3 (Figure 

7.3), Figure 7.9 reveals that the reflector with the highest dip angle is connected to the bed 

whilst the more horizontal reflector (detected further up the ice column) is not connected to the  
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Figure 7.9. Ground RES transect A1, collected across Horseshoe Valley by Dr. Andrés 
Rivera (Centro de Estudios Científicos). The radargram resolves the complex basal 
topography as well as two distinct englacial reflectors ~1180 �± 1690 m along the transect, at 
depths of 1300 �± 100 m below the ice surface, where ice flows through Horseshoe Valley 
towards the local grounding line of the FRIS.   
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Figure 7.10. Ground RES transect A2, collected in front of Patriot Hills by Dr. Andrés Rivera 
(Centro de Estudios Científicos). This radargram records the basal interface near Patriot Hills 
BIA, as well as a number of englacial reflectors. As the radar system failed twice during the 
traverse, two sections of the radargram contain limited or no data.   
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bed. In this radargram numerous weak reflectors are also recorded in the mid- to lower ice 

column, where echoes cross cut internal stratigraphic features. 

The second ground RES profile, line A2, imaged in Figure 7.10, reveals a new 

perspective of Horseshoe Glacier as the transect line was surveyed down flow, rather than 

across it. This radargram reveals a number of strong, near-horizontal englacial reflectors, which 

exhibit similar reflections to the bed. Although these straight and parallel englacial features can 

be traced along the front of Patriot Hills for over 3 km, more diffuse and disturbed layers feature 

when the survey line traverses the perimeter of Patriot Hills. 

 

Airborne RES of the Evans Ice Stream  

In order to appreciate the continent-wide occurrence of strong englacial reflectors near the 

ice/bed interface, Dr. David Ashmore from the University of Aberystwyth has allowed this 

thesis to examine an airborne RES transect across the Evans Ice Stream (Figure 7.11), where 

data were collected by the same British Antarctic Survey PASIN system described in Chapter 4.  

Although the radargram in Figure 7.11c reveals a number of subsurface features, related to 

differential ice flow velocities between the fast flowing Evans Ice Stream (where isochronal 

layers are disrupted and discontinuous), and slow-flowing upland catchment (where 

stratigraphic layers are often conformable with the subglacial topography) (Figure 7.11b), three 

distinct reflectors (E1-E3) are also recorded at the ice/bed interface. These reflectors extend into 

gently folded basal ice, where the boundary of the basal ice zone changes shape, and increases 

in thickness in conjunction with the occurrence of E1-E3.  

 

7.3 Interpretation 

7.3.1 Englacial reflectors 

This chapter has documented a number of highly reflective englacial structures, in a variety of 

ice penetrating radar surveys in and around Horseshoe Valley and the Evans Ice Stream. In each 

case, the radar system has recorded englacial bands or hyperbola (depending on scale) near the 

ice/bed interface; where the reflectors are recorded at a number of elevations (and depths below  
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Figure 7.11. Airborne RES transect line across the Evans Ice Stream (processed by Dr. David 
Ashmore from the University of Aberystwyth). a) shows the location of the Evans Ice Stream in 
relation to the Institute Ice Stream and the Antarctic Peninsula (background imagery details 
surface ice-flow velocity from MEaSUREs [Rignot et al., 2011a]). The black box marks the 
location of b) which details the position of the airborne RES flight line in more detail. The 
radargram in c) reveals continuous and parallel isochrones above the highland plateau and much 
more disturbed and discontinuous layering within the Evans Ice Stream. Three strong englacial 
reflectors, E1 �± E3 are also highlighted, where the features record similar reflection strengths to 
the bed. These strong reflectors are co-incident with englacial stratigraphic folds near the bed.  
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sea level); along transect lines of various orientations. Although the englacial features display 

similar reflection characteristics to the bed, two distinct forms exist; (1) reflectors that typically 

extend up to BI moraine sequences, on the leeward foreground of nunataks and (2), strong 

reflectors that are found at depth (beneath a thicker ice sheet), where reflectors do not reach the 

ice sheet surface. As all of the reflectors vary in size, shape and reflectivity with depth and 

distance from valley side walls, multiple reflection origins from the mountain front can be 

eliminated [Daniels, 2004; Cuffey and Patterson, 2010]. These findings reveal that the strong 

englacial reflectors documented throughout this chapter must evidence debris clasts/particles 

within the ice.  

 

7.3.2 Approximating englacial debris in and around Horseshoe Valley 

In order to approximate the area, volume and mass of englacial debris in and around Horseshoe 

Valley, polygons were used to define the perimeter of debris reflector bands within zones of 

offline reflectors and hyperbolic radar returns in various airborne RES transects (see Figure 

7.12). Approximate area calculations for each group of debris reflectors have been detailed in 

Table 7.1, which reveals a total debris area of approximately 14 million m2 within airborne RES 

detected debris bands. To convert area to volume, known distances between transect lines were 

fed into equation 7.1, which denotes a standard equation, developed to calculate the volume of a 

frustum (Vf). 

V f = (distance between transects/3) * (A1+A2 + �¥���$1* A 2)                           (7.1) 

 

This calculation reveals over 18 billion m3 of debris-rich ice in and around Horseshoe Valley, 

and over 14 billion m3 in front of Independence Hills alone (between transect lines 13-15). By 

converting volume to mass, using a standard high limestone density of 2560 kg/m3 [Ingham, 

2010], Table 7.1 shows how debris bands in the upper IIS catchment (in and around the 

Ellsworth subglacial highlands) amount to over 46 tera tonnes of debris. Whilst this total mass 

assumes that debris-band reflectors evidence large debris blocks within the ice, more realistic  
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Figure 7.12. Airborne RES transect line 15, annotated in b) to show the perimeter of debris 
reflector bands within zones of offline reflectors and hyperbolic radar returns (R2) in airborne 
RES transects.  
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estimates of ice/debris ratios have also been provided in Table 7.1, where mass 10% documents 

debris-rich ice with a ratio of 90% ice, and 10% debris within the reflectors, and mass 20% 

details an ice/debris ratio of 80:20 etc. Whilst further investigations are required to determine 

exact ice/debris ratios, a conservative estimate of debris-rich ice concentrations of mass 20% 

reveals over 9 tera tonnes of debris-rich ice in Horseshoe Valley Trough using airborne RES 

methods alone. Although this value approximates the mass of over 28 million Empire State 

Buildings (each weighing 331,122 metric tonnes), estimates in terms of Horseshoe Valley 

reveal that this equates to a layer of less than 1 mm of sediment across the entirety of Horseshoe 

Glacier surface. As this value is derived from a small number of surveyed lines, this low 

coverage indicates that ice flows in the Weddell Sea sector of the WAIS are capable of 

entraining and transporting large volumes of debris. 

  

7.4 Discussion 

Following discussions of debris entrainment mechanisms in Chapter 2 (section 2.7.2) this 

section will focus on the specific controls that regulate debris entrainment processes in 

Horseshoe Valley, where commentary on debris entrainment mechanisms in the Weddell Sea 

sector of the WAIS will also be provided. As debris entrainment is governed by a variety of 

processes including sediment availability, ice flow and ice temperature (see Chapter 2, section 

2.7.3) - which are often associated with ice thickness, debris entrainment mechanisms will be 

examined in terms of near-surface debris incorporation (in thin ice flows near nunataks), and 

then debris entrainment at depth (beneath thick ice accumulations).  

 

7.4.1 Near-surface debris entrainment  

Englacial layer folding, crevasse filling, thrust faulting and regelation process can all facilitate 

near-surface debris entrainment (section 2.7.2). By analysing the relationship between englacial 

stratigraphic features and the hyperbolic radar returns that represent englacial debris 

clasts/particles in thin ice flows near nunataks (e.g. Figures 7.6 and 7.8), it is possible to 

eliminate two of these near-surface debris entrainment mechanisms in Horseshoe Valley. As 
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detailed step-and-collect mode radargrams reveal that isochronal layers beneath BI moraine 

deposits in front of Patriot and Independence Hills are continuous and parallel (Figure 7.7), 

where there is no evidence of englacial layer folding or basal crevassing, near-surface debris 

entrainment through compressive folding or basal crevassing can be ruled out. Following 

literature reviews in Chapter 2, these findings imply that clasts must be entrained through thrust 

faulting and/or regelation processes at the ice/bed interface (Figure 7.13). Although most studies 

regard debris incorporation through regelation as a self-limiting process - as regelation into the 

bed eventually slows itself as the debris layer thickens [Alley et al., 1997], BI flows will 

suppress this condition, as compressive ice flows with upwards trajectories will help to elevate 

previously entrained clasts through the ice column, and expose new sediments at the glacial bed. 

These processes can account for some of the hyperbolic radar returns within Patriot and 

Independence Hills BIAs, as well as extensive surface moraine deposits (reported by Fogwill et 

al. [2012] and Westoby et al. [2015]).  

 Whilst regelation processes can enhance debris entrainment mechanisms beneath BIAs 

in Antarctica, it is also anticipated that the characteristically compressive flow regimes of BIAs 

associated with nunataks could promote debris entrainment through the initiation and 

development of thrust faults. In order to investigate this assertion, detailed step-and-collect 

mode GPR returns have been examined beneath Independence Hills moraine system in Figure 

7.8. Here, transect line IH3 reveals a series of stacked hyperbolic radar returns which frequently 

reveal one dominant limb which tends to vertical when migrated (although the complex 3-D 

nature of the features, recorded within 2-D transect lines prevents full migration). The crests of 

these hyperbolic features and their steepened limbs help to reveal seven linear features that 

cross-cut dipping isochrones as they extend from the subglacial bed, to the moraine surface. 

These features are interpreted as faults, which must develop in response to compression as BI 

flows are driven towards the ~14 km long mountain front of Independence Hills, which stands 

at a maximum elevation of 1670 m above sea level. Unconsolidated sediments will be entrained 

near the glacial beds as these thrust faults open and slip, which will allow the debris-rich ice to  
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Figure 7.13. Possible debris entrainment mechanisms in ice sheets (repeat of Figure 2.17). 
Supraglacial debris can be incorporated into ice flows through successive snow deposition in the 
accumulation zone, through crevasse filling or supraglacial stream incision. Basal debris can be 
entrained through a variety of processes linked to internal ice deformation. This includes 
folding, thrusting, freeze-on and crevasse-filling.  
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be transported through the ice column, towards surface moraine deposits [Hambrey and 

Glasser, 2011].   

Overall, these findings reveal that near-surface debris entrainment processes in the 

vicinity of nunataks are facilitated by the regelation of ice around debris clasts at the ice/bed 

interface and through thrust faulting mechanisms, where favourable conditions beneath BIAs 

allow large volumes of sediment to be entrained and transported towards the glacier surface. 

Spatial variations in debris entrainment mechanisms in Horseshoe Valley suggests that near-

surface debris incorporation throughout the EAIS and WAIS must be governed by local ice flow 

conditions (e.g. flow direction, velocity and internal stresses), debris availability at the ice/bed 

interface and ice thickness, where the point of entrainment will depend on ice temperature (and 

therefore the local thermal regime).  

 

7.4.2 Debris entrainment at depth   

Debris reflectors deep within the ice column are very different from the stacked hyperbolic 

radar returns described above. Figures 7.3 �± 7.4 describe how debris reflectors at depth are 

always angled away from the mountain front, rather than towards it, where steeply dipping 

debris bands are often co-incident with elevated basal topography and englacial stratigraphic 

folds. In Horseshoe Valley, airborne RES transects reveal a number of englacial debris bands 

that extend from valley side walls or bedrock obstacles. The relationship between these debris 

bands and stratigraphic folds in several radargrams in Figure 7.5 indicates that debris 

entrainment at depth must be facilitated by englacial layer folding. As field work by Boulton 

[1979] and many others have revealed that folds associated with compressive stress regimes 

around bedrock obstacles can remain stationary over time, this method of debris entrainment 

can account for the large volume of englacial debris clasts entrained at depth in this study, 

where sediment must be sourced from erosion along the ice stream margin. Following reviews 

by Stokes and Clark [2002] it is expected that stationary folds are maintained by stable ice flow 

conditions, where faster (and warmer) ice flow around a bedrock obstacle and slower (and 

colder) ice flow above the obstacle can create compressive conditions near the interface. This 
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compressive environment between warm and cold ice can account for the shearing and folding 

of ice near the ice/bed interface in transect lines 19b-21b, where sediment is entrained at the 

exact point at which the thermal boundary intersects the bedrock obstacle [Hindmarsh and 

Stokes, 2008]. Given that ice stream shear margins are highly dynamic features that are 

susceptible to migration [Jacobel et al., 1996; Smith et al., 2007], Figure 7.14 schematically 

represents the sensitivity of debris entrainment through englacial layer folding beneath thick ice 

sheets, where it is evident that debris incorporation at depth must rely upon debris availability, 

ice flow conditions, basal topography and ice temperature. 

 

7.4.3 Debris transport 

Processes of englacial debris transport beneath thick ice sheets are recorded by successive ice 

penetrating radar transects in and around Horseshoe Valley. These radargrams document the 

persistence and development of englacial debris bands, as ice flows from upland areas towards 

the local grounding line, where ice sheet conditions, sediment availability and bedrock 

conditions change spatially and temporally. At the point of entrainment, debris clasts beneath 

thick ice sheets can be moved vertically through the ice column as englacial layers fold in 

response to changes in the local thermal regime, and by successive debris entrainment at the 

ice/bed interface, where newly entrained clasts elevate previously incorporated clasts through 

the ice column. As Stokes and Clark �>���������@���G�L�V�F�R�Y�H�U�H�G���W�K�D�W���V�H�G�L�P�H�Q�W���Z�L�O�O���E�H���µ�V�P�H�D�U�H�G���R�X�W�¶���L�Q��

the downstream direction by passive transport when conditions are no longer met for 

entrainment (e.g. R3 in transect line 18 and R5 in transect line 21b), compression and extension 

regimes must govern sediment transportation in Antarctica. Figure 7.15 demonstrates this 

assertion by showing how debris is actively transported through compressive ice flows near 

bedrock obstacles, and passively transported when ice flows past the obstacle (where ice 

experiences extensional flow). These processes allow debris to be entrained and transported 

through the WAIS, where sediment can be efficiently transported from continental sources to 

the local grounding line, and ultimately the Southern Ocean.  
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Figure 7.14. Investigations of debris entrainment at the glacial thermal boundary. In a) 
debris is excavated at the thermal boundary, at the junction between fast flow (warm-based 
ice) and slow flow (cold-based ice). This process will continue until sediment sources are 
exhausted at the interface e.g. in b), when previously entrained clasts are passively 
transported down flow, through the ice. If the thermal boundary were to move in response to 
ice thickness changes (e.g. in c), new sediment sources could be exploited. Passively 
transported clasts could still be present in the regional ice flow in this scenario.  
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Figure 7.15. Extension and compression of ice layers and associated debris sequences, as 
ice flows past a bedrock obstacle like a nunatak. Active erosion and transportation will 
occur under compressive flow regimes near the mountain front, whilst more passive debris 
transport will dominate under extensional flow.  
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Whilst many studies also recognise the importance of near-surface debris transportation 

through BIA systems, particularly because of their rare ability to bring old ice and meteorite 

deposits to the glacial surface [Whillans and Cassidy, 1983; Bintanja, 1999], traditional ice 

penetrating radar surveys have failed to resolve the detailed internal stratigraphy, and 

distribution of debris clasts within BIAs. Although this has hindered our understanding of near-

surface debris entrainment and transportation processes until now, detailed step-and-collect 

mode radar surveys across Patriot Hills BIA and the BI moraine sequences in front of 

Independence Hills have allowed debris clasts to be traced through the ice column, where it is 

evident that clasts are transported by compressive ice flow and thrust faulting. These 

mechanisms have allowed over 3.7 ± 3 tera tonnes of material (assuming an ice/debris ratio of 

approximately 80:20) to be transported from the subglacial bed to BI moraine surfaces in front 

of Independence Hills. However, Westoby et al. [2016] stress that transportation does not cease 

once clasts are deposited at the surface, as BI flow beneath the moraine continues to elevate 

exposed sediments, and push them in towards the mountain front (see Chapter 3, section 3.6.1 

and Figure 3.9). At the same time, sublimation from katabatic winds will also elevate moraine 

clasts relative to the exposed ice surface [Westoby et al., 2016]. 

 

7.5 Summary 

Ice penetrating radargrams reveal that airborne RES, ground RES and detailed step-and-collect 

mode GPR surveys can be used to image and trace englacial debris accumulations in Antarctica 

at a variety of scales, depths and orientations. By investigating englacial debris reflectors in and 

around Horseshoe Valley and the Evans Ice Stream this study has revealed that debris sources 

are abundant in the Weddell Sea sector of West Antarctica, where over 9 ± 5 tera tonnes of 

englacial debris clasts (assuming an ice/debris ratio of 80:20) have been approximated in 

airborne RES traverses across Horseshoe Valley Trough alone. Although these clasts and 

particles are entrained at a variety of elevations and depths beneath the ice surface, all debris 

entrainment mechanisms rely upon sediment availability and ice flow, where ice temperatures 

regulate the exact point of entrainment. In Horseshoe Valley debris is frequently excavated 
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when the thermal boundary intersects bedrock obstacles. This allows available debris clasts and 

particles to be entrained through regelation processes and compressive faulting and folding, 

where successive debris entrainment at the ice/bed interface and debris transportation through 

the ice column is encouraged by local ice flow conditions.  

 As debris sources, entrainment mechanisms and transportation routes are sensitive to a 

number of controls related to sediment availability, ice flow and ice temperature, englacial 

debris accumulations in Antarctica will be spatially variable, and subject to temporal changes 

associated with both internal and external forcings. This finding is particularly important for 

predictive forecasting, as surface warming in Antarctica could de-buttress rock walls and alter 

glacial thermal regimes through ice elevation and topographic changes. These modifications to 

ice temperatures or debris availability would alter frictional stress at the glacial bed, which 

could modify ice flow speeds [Bell et al., 1998], change ice flow direction through long-term 

erosive processes [Harbor et al., 1988] and influence the abundance of essential nutrients like 

BioFe in the Southern Ocean  [Death et al., 2014; Hawkings et al., 2014]. This work suggests 

that it is now critical to assess continental debris sources from the extraglacial and subglacial 

environment.  
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CHAPTER 8 

Snow drift  modelling for Blue Ice Areas 

 

As BIAs have the ability to bring large quantities of ice and sediment to the glacial surface, 

numerous studies have used BIAs to infer the history of the Antarctic Ice Sheet, where 

cosmogenic nuclide and climate investigations typically assume stability in katabatic winds and 

BIAs. In order to determine the conditions necessary to initiate and maintain BIAs in Horseshoe 

Valley, this chapter will utilise a rule-based snow-drift model, termed Snow_Blow which was 

recently coded by Dr. Stephanie Mills from Plymouth University and collaborators. A variety of 

model runs will be presented and analysed to validate Snow_Blow and simulate conditions 

across the Southern Heritage Range ~10 ka ago.  

 

Snow drift  modelling objective 

Model the transport of snow by wind in Horseshoe Valley and compile a sensitivity analysis to 

determine the conditions necessary to initiate and maintain Blue Ice Areas in front of the 

Patriot, Independence and Marble Hills. 

 

Research questions 

1) Can the Snow_Blow model define the current spatial variability and extent of snow 

accumulation/erosion patterns in Horseshoe Valley? 

2) How sensitive are BIAs to changes in wind direction? 

3) How do Snow_Blow model outputs respond to changes in ice surface elevation? 

4) What was the spatial distribution of BIAs in Horseshoe Valley through the Holocene? 

5) What are the implications for debris/BI moraines? 

 

8.1 Introduction 

The uplift and horizontal transport of snow by wind, henceforth referred to as drifting snow, is 

an important process in Antarctica, due to the nature of topography, wind flow (Figure 8.1) and  
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Figure 8.1.  Surface airflow over Antarctica, marked by black arrows (downloaded from 
Bromwich et al. [1994]). Thin solid lines show ice surface elevation contours in 100 m 
increments (after Parish and Bromwich [1987]).  
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snow accumulation patterns (Figure 8.2) [Metvold et al., 1998]. Drifting snow represents a 

coupled system between the cryosphere and the atmosphere, where snow has shaped the 

topography in Antarctica, and consequently altered the wind field, which modifies drifting snow 

[Frezzotti et al., 2002]. As such, snow drift has important hydrological implications, related to 

differential distribution across catchments. Whilst snow accumulation in Antarctica is generally 

regarded as quite low, snow falls over the entire ice surface, at a mean accumulation rate of 

approximately 15 cm a-1 (water equivalent) [Genthon et al., 2007] (although Figure 8.2 shows 

how many areas experience much lower accumulation rates). The net surface accumulation is 

the sum of precipitation, surface sublimation, accumulation or erosion by drifting snow and melt 

with associated runoff although typically ice surfaces greater than 1000 m a.s.l. do not 

experience melt in Antarctica [Bintanja, 1999]. These processes can result in either a positive or 

negative surface mass balance. However, net mean ablation does not always result in a region of 

negative mass balance, as compensating ice flow from surrounding areas can often counteract 

ablation and create a relatively stable mean surface elevation.  Areas such as these tend to exist 

at high elevations (up to 2500 m a.s.l. [Bintanja, 1999]) where orographic features favour strong 

and persistent katabatic wind flow. These winds evolve high on the Antarctic plateau (Figure 

8.2) where net long-wave radiation losses cool the near-surface air [Nylen et al., 2004]. This 

allows the cold dense air to flow downslope to replace the less dense air at lower elevations 

[Hoinkes, 1960; Ishkawa et al., 1982]. The resultant wind scour and surface ablation favour 

compressive ice flow and produce BIAs, which cover 0.8 �± 1.6 % of the Antarctic continent 

[Winther et al., 2001] (section 2.5.6, Chapter 2). These BIAs, typically in the lee of nunataks 

have the ability to bring large quantities of ice and debris to the surface by compressive, 

upwards ice flow (Chapters 5 and 7). BIAs have therefore been used to infer the history of the 

Antarctic Ice Sheets, where horizontal isotopic climate record interpretations (e.g. Turney et al. 

[2013]) and studies such as that by Hein et al. [2016a] have inferred stability in katabatic winds 

in order to suggest unbroken ice sheet conditions in West Antarctica for 1.4 million years. In 

order to determine the sensitivity of BIAs in Horseshoe Valley to changes in ice sheet elevation 

and prevailing katabatic wind direction this chapter will use a novel snow drift model, termed  
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Figure 8.2.  Antarctic snow accumulation mapped using polarisation of 4.3 cm wavelength 
microwave emission. Image downloaded from Arthern [2006]. 
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Snow_Blow, to assess the main controls on BIA formation and preservation in front of the 

Patriot, Independence and Marble Hills (Figure 8.3). 

 

8.2 Methodology  

A simple qualitative snow drift model (Snow_Blow) developed by Mills et al. [Submitted] has 

been employed to derive spatial variations in the redistribution of snow over irregular 

topography in and around the Southern Heritage Range. The snow drift model requires two 

primary inputs to determine the local wind vector field: wind data (speed and direction) and a 

high resolution Digital Elevation Model (DEM) of the study site.  

 

8.2.1 Snow_Blow model specifications, developed by Mills et al. [Submitted]. 

In order to create a local wind vector field (to derive the spatial variations in the relative 

�D�F�F�X�P�X�O�D�W�L�R�Q���R�I���V�Q�R�Z���D�W���Y�D�U�L�R�X�V���O�R�F�D�W�L�R�Q�V�������W�K�H���L�Q�L�W�L�D�O���D�Y�H�U�D�J�H���Z�L�Q�G���G�L�U�H�F�W�L�R�Q�����,�������W�K�H���G�L�U�H�F�W�L�R�Q��

the wind is coming from) and average wind speed (F) from the field site were used to calculate 

the deflection of wind around the topography (Figure 8.4) using an empirical equation 

developed by Ryan [1977] (equation 8.1). 

 

                                                ���(�× 
L��
F�r�ä�t�t�w�Û�5�× �Û�•�‹�•���:�t�:�#
F�#�;�;                                       (8.1) 

 

Where: Fd is the wind diversion factor (°), Sd is the slope to the horizon in the downwind 

direction (%), A �L�V���W�K�H���V�O�R�S�H���D�V�S�H�F�W�����ƒ�����D�Q�G���,���L�V���W�K�H���L�Q�L�W�L�D�O���D�Y�H�U�D�J�H���Z�L�Q�G���G�L�U�H�F�W�L�R�Q�����ƒ�����>Purves et 

al., 1999b]. 

 

Using this vector field, the sheltering effect of the terrain was computed for every cell 

using the slope index (Si) (equation 8.2) and shelter index (Ti) (equation 8.3), to produce a 

modified wind speed (Fm) (equation 8.4).          
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Figure 8.3. Landsat Image Mosaic of Antarctica showing the location of Patriot, Marble and 
Independence Hills. Panel b) highlights wind drift tails, BI moraine sequences and BIAs in front 
of nunataks in the Southern Heritage Range. The rose diagram (projected in polar stereographic) 
in c) shows persistent katabatic winds from the southwest, recorded hourly from an AWS at 
Patriot Hills blue-ice aircraft runway throughout 2009.  
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Figure 8.4. Schematic diagram, adapted from Purves et al. [1998] to show modified wind 
deflection (Fd) for each individual cell, based upon slope aspect (A) and slope to the horizon 
downwind (Sd) relative to the initial �Z�L�Q�G���G�L�U�H�F�W�L�R�Q�����,���� 
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Where Smax is the maximum slope angle.  
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Once the wind direction and speed have been modified, snow transport from cell to cell 

is calculated before the full movement of snow is modelled. The amount of material eroded 

from a cell by the wind factor within a cell is calculated using equation 8.5 which ultimately 

controls the number of model iterations required. This equation is based on an empirically 

derived relationship by Pomeroy [1993]. Depositional distance is then calculated using 

equations 8.6 and 8.7. 
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Where Q is the amount of snow eroded from a cell, k is a constant, F is the wind velocity and Ft 
is the threshold wind velocity.   
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Where L is Lamba, md is the mean depositional distance and mxd is the maximum depositional 
distance.  
 
The final model component involves moving snow from cell to cell relative to the wind 

direction. The cells which can contribute to snow transport are selected based on the Tarboton 
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[1997] multiple-flow direction routing algorithm, which shows the least dispersion compared to 

other multiple-flow direction routing algorithms [Le Brocq et al., 2006] (Figure 8.5). As a 

result, the model can determine the locations most likely to experience erosion and 

accumulation. More specific details on the Snow_Blow model can be found in Mills et al. 

[Submitted].  

 

8.2.2 Digital elevation model selection 

Due to the complex mountainous topography in Horseshoe Valley only two DEMs contained 

suitable resolutions and time stamps for the Snow_Blow model; these included an Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m resolution DEM 

(collected in 2011 and available to download from Earth Explorer) and a Satellite Pour 

�O�¶�2�Eservation (SPOT) 40 m resolution DEM (collected by SPOT5-HRS images in 2008 

[Korona et al., 2009] and available to download from the Theia Land Data Centre). Although 

the ASTER DEM possesses the greater resolution, false spikes in the dataset (most likely caused 

by scattering from clouds above nunataks [Eckert et al., 2005]) have resulted in unrealistic 

surface topography in Horseshoe Valley (Figure 8.6a, 8.6b). Methods to remove these spikes 

were explored using 3D Structure-from-Motion software packages such as Quick Terrain 

Modeller (QTM) where a site-scale and peak-scale smoothing algorithm were applied to the 

DEM (Figure 8.6c �± 8.6f) and MeshLab software [Meshlab, 2014], where applications were 

employed to remove spikes in the data by gridding the entire surface topography (Figure 8.6g, 

8.6h). As none of these methods could accurately replicate the surface topography in and around 

Horseshoe Valley, particularly behind Patriot and Independence Hills, a second DEM, this time 

a SPOT 40 m resolution DEM, was explored. A visual comparison between these DEMs has 

been provided in Figure 8.7. This figure shows that the false spikes recorded in the ASTER 30 

m resolution DEM do not exist in the SPOT 40 m resolution DEM, which accurately depicts the 

surface topography of Horseshoe Valley. As a result, all model simulations in this chapter have 

been run on the SPOT DEM.   
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Figure 8.5. Comparisons between three widely used multiple-flow routing methods; Warner, 
Quinn and Tarboton. In each case influence maps for 1 unit of accumulation (m3 yr -1; scale 1 
(black) to 0 (white)) have been added at the top of a planar surface orientated at various angles 
to the grid (x, y and z are arbitrary units and represent the number of cells). The Tarboton 
method shows the least dispersion of the three algorithms. This figure has been modified from 
Le Brocq et al. [2006].  
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Figure 8.6. Various methods applied to remove spikes in a 30 m resolution ASTER DEM 
across Horseshoe Valley. a) and b) show false spikes in the DEM behind Patriot and 
Independence Hills. The entire DEM surface was smoothed in panels c) and d) to try and 
remove the spikes in Quick Terrain Modeller (QTM) but this resulted in large data gaps. 
Smoothing of the spikes only in e) to f) was much more effective, but still produced an un-
representative topography, particularly behind Independence Hills. MeshLab software was 
employed in g) and h) to grid the entire surface of the study site. This smoothed false spikes but 
did not eradicate them. 
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Figure 8.7. Comparisons between an ASTER 30 m resolution DEM and a SPOT 40 m 
resolution DEM, collected across Patriot and Independence Hills, Horseshoe Valley. Numerous 
false spikes are recorded behind the Patriot and Independence Hills and towards the centre of 
Horseshoe valley in a) and b) which detail the ASTER DEM. These large areas of 
unrepresentative topography are not recorded in the SPOT DEM in panels c) and d).  
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8.2.3 Site specific inputs 

Once the DEM was selected, the Snow_Blow model was initialised assuming an equal 

distribution of snow over the whole topography, although a constant flux was set at the 

boundaries, so that the rate of surface snow drift erosion equalled the rate of snow accumulation 

at the boundary of the SPOT 40 m resolution DEM. This condition allows material to drift into 

the model in subsequent iterations, so long as conditions for drifting snow are met at the 

boundaries. An initial wind direction of 135° (polar stereographic) and wind speed of 15 m s-1 

were used for most model runs (unless specified), based on average hourly weather station data 

from Patriot Hills blue-ice aircraft runway in 2009 (displayed as a rose diagram in Figure 8.3c).  

Threshold wind speed to initiate snow drift was defined as 5 m s-1 following Frezzotti et al., 

[2004] and references therein, whilst the mean depositional distance of snow was set to 150 m, 

with a maximum depositional distance of 690 m (further details on the derivation of these 

values can be found in Mills et al. [Submitted]). Each model was run for a sample of 20 

iterations (see Figure 8.8) to simulate the repetition, and therefore the evolution of snow 

transport over time. It should be noted that the qualitative Snow_Blow model does not take into 

account any feedback mechanisms to stop the transportation of snow over subsequent iterations, 

such as the further state of metamorphism in the snow pack, sublimation or complex ice sheet 

flow.  

 

8.3 Results 

8.3.1 Model validation 

Initial model runs (displayed in Figure 8.9), using the SPOT 40 m resolution DEM and locally 

derived wind data from Patriot Hills BIA reveal consistently strong surface snow drift erosion 

on the downwind side of Patriot, Independence and Marble Hills, where the locally derived 

wind vector field approximates katabatic wind flow over the nunataks and down gullies. 

Moderate surface snow drift erosion is simulated in the cells behind outcrops with less 

topographic relief, for example, at the eastern end of Independence Trough. The exact position 

of snow accumulation varies throughout subsequent iterations. During initial model runs 
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Figure 8.8. Iterative path applied to the Snow_Blow model. 
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Figure 8.9. Snow_Blow model outputs from the SPOT 40 m resolution DEM. a) original DEM, 
b) Snow_Blow run over 5 iterations, c) Snow_Blow run over 15 iterations, d) Lima tiff on SPOT 
DEM to compare current Blue Ice Area extent with Snow_Blow iterations, to show that the 10th 
iteration, modelled in e) provides the most representative snow drift output. Finally, f) shows 
the output of the Snow_Blow model run over 20 iterations.   
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(1-5 iterations) snow accumulates on surfaces which are upwind of obstacles which have low-

to-high topographic relief. These include individual massifs and rock outcrops as well as a 

distinct 10 m high moraine ridge in front of Independence Hills (Figure 8.9b). However, as 

snow transportation evolves through subsequent iterations (10-20 iterations), snow 

accumulation becomes restricted to cells with more moderate to high topographic relief, as 

surface snow drift erosion begins to dominate areas of lower relief, such as the moraine ridge on 

the leeward side of Independence Hills. Moving away from the nunataks of the Heritage Range, 

there is very little modification to surface snow redistribution over the relatively flat ice surface 

that extends across Horseshoe Valley and Independence Trough during the 20 model iterations, 

representing a constant flux into and out of the cells (Figure 8.9). 

 In order to determine the most representative number of iterations required to simulate 

the current spatial extent of surface snow drift erosion in front of Patriot, Marble and 

Independence Hills, each model iteration was compared to LIMA satellite imagery, collected in 

2008 (Figure 8.9d). This assessment revealed that the modelled surface snow drift erosional 

extent in the 10th iteration best reproduced the current, observed BIA extent (Figure 8.9d), 

where qualitative analysis reveals that 93% of the area is correctly modelled (Figure 8.9). This 

demonstrates that the present day prevailing wind direction of 135° polar stereographic allows 

contemporary snow drift conditions to be simulated effectively. As the Snow_Blow model does 

not contain any feedback mechanisms to stop the progressive expansion of snow drift erosion 

and accumulation through subsequent iterations, all model runs are analysed on the 10th 

iteration.  

 

8.3.2 Changing prevailing wind direction 

In order to determine the impact that wind direction has on the areal extent of surface snow drift 

erosion, and therefore the location and extent of BIAs in Horseshoe Valley, slight changes in the 

prevailing wind direction were corded in three further Snow_Blow model runs. By altering the 

current prevailing wind direction of 135° in 10° increments, to 95°, 115° and 155° (to simulate  
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wind flow forced by morphological changes in the ice sheet) Figure 8.10 shows the modelled 

output for each hypothetical wind direction. Although the severity of surface snow drift erosion 

remains similar in all model runs the exact position, orientation and extent of snow drift erosion 

differs in each simulation (Figure 8.10b, 8.10c and 8.10d). The least extent of surface snow drift 

erosion is simulated when winds approach Horseshoe Valley from 95° polar stereographic, 

when the model only predicts 36% of the eroded BI surface. A general increase in surface snow 

drift erosional extent is recorded when the dominant wind direction is simulated from 115° 

(63% success rate) and then from 155° when the model predicts 74% of the eroded BI surface. 

Subtle changes in the snow accumulation field are recorded over each model run, as 

snow continues to accumulate on the upwind side of exposed outcrops.   

 

8.3.3 Historic ice surface elevation 

To determine snow drift conditions in Horseshoe Valley through the Holocene, a variety of 

former ice surface elevations were also simulated in accordance with recently published 

cosmogenic nuclide exposure age dating of glacial debris on mountain slopes within the 

field site [Hein et al., 2016b]. Dated erratics suggest that during the LGM and until 10 

ka ago the ice-sheet surface was ~400 m thicker than present. Thus, the original SPOT 

40 m resolution DEM was modified to simulate conditions 10 ka ago. The new DEMs, 

representing thicker ice-�V�K�H�H�W�� �V�X�U�I�D�F�H�V�� �Z�H�U�H�� �J�H�Q�H�U�D�W�H�G�� �X�V�L�Q�J�� �(�6�5�,�� �$�U�F�0�D�S�� �µ�U�D�V�W�H�U�� �F�D�O�F�X�O�D�W�R�U�¶����

which was employed to increase the present ice surface elevation by 100 m increments (whilst 

preserving the current topography), without altering the elevation of the three nunataks and 

Morris Cliffs. A simple horizontal extrapolation was used to fill any voids between the raised 

ice sheet surface and the unmodified rock outcrops. These new DEMs can be viewed in Figure 

8.11, where the approximate extent of exposed bedrock is highlighted, along with a cross 

sectional profile through Patriot and Independence Hills.  
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Figure 8.10.  Wind-driven snow erosion simulations, a) extent of erosion in front of Patriot, 
Independence and Marble Hills under a variety of modelled polar stereographic wind directions: 
95°, 115°, 135° and 155°, as indicated by the wind rose. The Snow_Blow model outputs from 
115°, 135° and 155° are shown in 3D in figures b-d. 
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Figure 8.11. Original and modified SPOT 40 m resolution DEMs to show a) the present ice 
surface elevation as well as modified DEMs, where the ice elevation was increased by b) 200 m 
and c) 400 m. Black lines indicate the approximate extent of exposed bedrock, d) shows a cross 
section (A-�$�¶�����W�K�U�R�X�J�K���3�D�W�U�L�R�W���D�Q�G���,�Q�G�H�S�H�Q�G�H�Q�F�H���+�L�O�O�V�� 
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Direct comparisons from each Snow_Blow simulation, run over former ice surface 

elevations can be seen in Figures 8.12 and 8.13, where each model was run for 10 iterations, 

with a prevailing wind direction of 135° polar stereographic. Panel A documents the difference 

between surface snow drift erosion, modelled on present day ice sheet surfaces, and snow drift 

conditions simulated on the DEM modified to represent an ice surface elevation increase of 100 

m. Although these panels reflect minimal changes in surface snow drift erosion close to Patriot 

Hills, the spatial extent of surface snow drift erosion decreases as the nunatak relief is 

effectively lowered by the ice elevation increase. Along the leeward slopes of Independence and 

Marble Hills there is an overall decrease in erosion between the two model runs. However, 

some areas with lower topographic relief do experience considerably less snow drift erosion 

when the ice surface is raised, relative to the height of the nunataks. Panels 8.12a and 8.13a also 

show an increase in snow accumulation on each of the massifs when the ice surface is raised by 

100 m.  

A comparison between Snow_Blow model outputs from DEMs modified to represent 

increased ice sheet elevations of 200 m and 100 m above present (Figure 8.13b) reveals very 

little change in the spatial extent and intensity of surface snow drift erosion across the study site, 

although a slight increase in accumulation is still recorded on the upwind side of major slopes. 

However, Panel 8.13c reflects another important shift in the Snow_Blow model output when the 

initial ice level is raised by 300 m, causing Patriot Hills and a number of other, previously 

exposed outcrops behind Independence and Marble Hills to be effectively buried (this can also 

be seen in Figure 8.12c, where the Snow_Blow model records significantly less erosion than 

previous model runs). This burial dramatically reduces wind scour in front of Patriot Hills, 

causing model outputs to simulate considerably less snow drift erosion. When the ice surface is 

raised by 300 m snow accumulation is also more spatially variable. The final panel, Figure 

8.13d, shows a result much more similar to 8.13b than 8.13c, representing another shift in ice 

surface conditions, as snow drift erosion rates begin to stabilise between the Snow_Blow model 

run on an ice sheet elevation of 300 m and 400 m.  Again, more snow accumulation is simulated 

on the upwind side of areas with high relief, which include the now buried Patriot Hills as well  
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Figure 8.12. Quantified changes in snow drift conditions as the ice elevation is raised to 
simulate past ice sheet conditions. Each model was run over 10 iterations with an incoming 
wind direction of 135°. Simulated outputs for each new DEM, raised by a) 100m, b) 200 m, c) 
300 m and d) 400 m have been subtracted from the original Snow_Blow model output, which 
was run on an ice surface elevation representative of present day conditions. 
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Figure 8.13. Quantified changes in snow drift conditions as the ice elevation is raised in 100 m 
increments to simulate past ice sheet conditions. Each Snow_Blow simulation (run over 10 
iterations, with an incoming wind direction of 135°) has been subtracted from the previous 
Snow_Blow model output (which was run on a DEM with an ice surface 100 m lower). 
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as remaining outcrops, which largely comprise of the high elevation peaks of Independence and 

Marble Hills (Figure 8.11c). 

 

8.4 Discussion 

8.4.1 Model validation 

By comparing snow drift features identified in satellite imagery, such as wind drift tails and 

BIAs in Figure 8.3 to initial model outputs in Figure 8.9, it is evident that the Snow_Blow model 

(which utilises basic meteorological parameters and a 40 m resolution DEM) can accurately 

identify sheltered snow accumulation zones and areas of surface snow drift erosion in the 

southernmost Heritage Range at the north-eastern flank of Horseshoe Valley. Outputs from the 

simple, qualitative model mimic the irregular surface topography captured by satellite imagery 

and DEMs. Nunataks and their upwind slopes are regions capable of capturing snow whilst 

surface snow drift erosion is simulated when the modelled wind vector field approximates 

katabatic wind flow on the downwind side of uplands where the modelled wind vector field 

simulates katabatic wind flow. BIAs are located in such leeside locations and act as a unique 

form of model validation. Comparisons between modelled and observed BIA extent reveals that 

the Snow_Blow model can simulate surface snow drift erosion in areas with complex 

topography. Indeed, model simulations reveal that the location of BIAs and their orientation is 

governed by the local wind vector field, which is influenced by topography (Figure 8.10). These 

findings confirm results from numerical model simulations (using meteorological data and a 

finite element code in Elmer) in Scharffenbergbotnen BIA, Dronning Maud Land, East 

Antarctica by Bintanja and Reijmer [2001] and Zwinger et al. [2015], which find that katabatic 

winds are required to initiate and maintain BIAs and associated moraine sequences in 

Antarctica.  

Although the large BIAs in Horseshoe Valley reflect persistent wind scour in front of 

nunataks in the southern Heritage Range it is worth noting that the snow drift model is also 

capable of capturing real-world processes acting on hourly-to-daily timescales. Initial model 

simulations reflect the gradual build-up of snow on topographic ridges like the BI moraine ridge 
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in front of Independence Hills (Figure 8.3b), before erosion begins to dominate in subsequent 

iterations without the additional input of snow. These processes, combined with other factors 

not considered by the Snow_Blow model, such as local ice flow (see chapters 2 and 5) and snow 

metamorphism control a variety of feedback mechanisms which regulate BIA extents in 

Antarctica [Bintanja and Reijmer, 2001]. 

 

8.4.2 Changing meteorological conditions 

Although relatively consistent wind directions have been recorded at Patriot Hills BIA on short 

timescales by AWS data and on longer timescales of several thousand years through analysis of 

GPR transects (see chapter 5 and resultant paper Winter et al. [2016]), Snow_Blow simulations 

reveal that any future change in the prevailing wind direction would reduce surface snow drift 

erosion in Horseshoe Valley (Figure 8.10). Each of the hypothetical wind directions simulated 

in Figure 8.10 show a reduction in the areal extent of surface snow drift erosion in front of the 

nunataks when compared to simulations run under present conditions. These findings reveal that 

even a slight change in wind direction caused, for example by a change in the morphology of 

the ice sheet would reduce the size of BIAs in Horseshoe Valley. In turn this would alter local 

ice-flow dynamics and sediment transfer in BIAs as well as the hydrological regime.  

Although the Snow_Blow model shows that the current prevailing wind direction across 

Horseshoe Valley permits the greatest surface snow drift erosion, and therefore the greatest BIA 

extents, this study has also discovered that the orientation of the mountain range, relative to the 

prevailing wind direction plays an important role in the location and size of BIAs. For example, 

the BIA in front of Morris Cliffs is nearly twice as large as the BIA in front of the northern 

extremity of Patriot Hills. As the prevailing wind direction is nearly perpendicular to Morris 

Cliffs, katabatic wind flow can easily stream over the long, thin mountain chain and erode a 

large area in the lee. In comparison, the katabatic winds flowing over Patriot Hills, where the 

wind fetch is limited by the complex topography of Independence Hills, is less extensive. This 

has important implications for ice flow and debris transport in Horseshoe Valley, as the larger 
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BIAs in front of Independence Hills, Morris Cliffs and Marble Hills can encourage more ice and 

debris to reach the surface than the neighbouring, and smaller Patriot Hills BIA.  

 

8.4.3 Past snow drift conditions 

By simulating former ice sheet conditions in Horseshoe Valley, patterns of surface snow drift 

have been explored under a variety of former ice sheet elevations. Simulating a thicker ice 

sheet, akin to ~10 ka ago, has revealed that the height of an outcrop, relative to the ice surface 

elevation, has a strong influence on the intensity and areal extent of surface snow drift erosion, 

transportation and accumulation. For example, an ice elevation just 100 m thicker than present 

simulated less surface snow drift erosion on the downwind slopes of the Heritage Range 

(Figures 8.12 and 8.13) than models run on current ice sheet elevations. This finding can be 

accounted for by weakened air turbulence; a direct result of reduced nunatak to ice surface relief 

[Bintanja, 1999] (e.g. Figure 8.14). Whilst sublimation is not accounted for in the Snow_Blow 

model it is worth noting that this weakened air turbulence will also reduce rates of sublimation, 

which will promote a positive feedback loop that will  encourage the ice sheet to thicken (see 

Bintanja [1999]). 

 Although Figure 8.13a reveals the influence that ice surface elevation has on snow drift 

conditions, further simulations (run on increasingly thicker ice) reveal that there is not a linear 

relationship between ice elevation changes and snow drift erosion/accumulation at the ice 

surface. By comparing Figure 8.13a to other panels in the same figure it is evident that surface 

snow drift erosion must sometimes surpass thresholds that initiate system reorganisation. In 

Horseshoe Valley thresholds are reached when the ice sheet surface is raised by 100 m and then 

by 300 m. When the present day ice sheet surface is increased by 300 m, Patriot Hills and 

numerous other lower elevation nunataks and outcrops are buried. This allows snow to drift 

over the now raised ice sheet surface, which impacts simulated snow drift conditions in 

Horseshoe Valley. Although studies, such as that by Zwinger et al. [2015], have documented 

similar reductions in katabatic winds and surface snow drift erosion under thicker ice sheets, the 

continued snow accumulation above Patriot Hills in Figures 8.13c and 8.13d represent DEM  
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Figure 8.14. Schematic illustration of BIA decline during periods of increasing ice thickness 
(adapted from Bintanja [1999]). When mountains are exposed above an ice sheet (like Stage 1) 
increased turbulence from katabatic wind flow will promote sublimation of the ice surface and 
contribute to the surface lowering of the BIA. If meteorological or ice flow conditions change 
and the mountains become less exposed, like Stage 2, there will be a lower ice surface to 
mountain top relief, which will reduce air turbulence, limiting surface erosion and sublimation. 
This will act to decrease the size and extent of BIAs associated with nunataks. Once the 
mountain is buried by ice, leeward wind erosion will reduce dramatically (e.g. Stage 3), to the 
point at which wind will flow  freely over the smooth, sloping surface topography (Stage 4).  
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modifications, rather than real-world processes, as the original ice sheet surface was raised 

without accounting for any glaciological changes in ice surface morphology or ice flow 

modifications, which would smooth the surface over Patriot Hills and limit snow accumulation. 

As Independence and Marble Hills protrude up to 500 m above the present ice sheet 

surface, the tops of these mountains would have been ice-free when the ice sheet was 

approximately 400 m thicker, during the LGM and up to 10 ka ago [Hein et al., 2016b] (Figure 

8.11). The consequence of this is reflected in the Snow_Blow output, as surface snow drift 

erosion still dominates the downwind slopes of the massifs, albeit at a reduced spatial coverage 

and intensity. Whilst the modified DEMs cannot emulate exact ice surface conditions at the 

LGM and ~10 ka ago, the Snow_Blow model outputs suggest that BIAs in front of 

Independence and Marble Hills, and indeed BIAs in front of other local mountain ranges at 

similar elevations (including Liberty Hills) have existed for at least the last glacial cycle and 

that lower elevation nunataks, like Patriot Hills only emerged from a thinning ice sheet ~6.5 ka 

ago. These findings capture spatial changes in BIA formation and evolution, where the shape 

and form of individual BIAs will have varied as the ice sheet elevation fluctuated in response to 

internal and external forcings. 

These results help explain elevated glacial trimlines and BI moraine deposits in the 

Southern Heritage Range and substantiate work published by Hein et al. [2016b], as katabatic 

wind flow has been stable for long periods of time. Since simulations also reveal that BIAs 

would have existed in front of the highest nunataks in Horseshoe Valley during the LGM and 

until 10 ka ago, zones of previously scoured BI must have been transported along the length of 

Horseshoe Glacier for thousands of years.  These results agree with local GPR investigations 

detailed in Chapter 5 and the resultant paper by Winter et al. [2016], by confirming that the two 

unconformities in Patriot Hills BIA sequence can indeed be attributed to paleo katabatic wind 

scour further up valley, as ice flowed through BIAs in front of Liberty and Marble Hills (Figure 

5.10).  

Snow_Blow investigations also highlight the sensitivity of katabatic wind scour (and 

therefore BIA erosion) to ice sheet elevation changes. Findings have revealed that snow 
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transport, erosion and deposition in Antarctica can experience dramatic changes as a result of 

small adjustments in ice sheet thickness or prevailing wind directions. This allows BIAs to 

initiate, grow, shrink, migrate, stagnate and re-initiate over both short and long time periods. As 

simulations of recent ice sheet surface lowering in Horseshoe Valley and Scharffenbergbotnen 

Valley [Zwinger et al., 2015] have documented the initiation and growth of BIAs in recent years 

it is expected that the number (and size) of BIAs in Antarctica could increase as feedbacks 

associated with warmer surface temperatures lower ice sheet elevations further (see Chapter 2, 

section 2.4).  

 

8.5 Summary 

Snow_Blow model runs accurately identify surfaces of accumulation and snow drift erosion in 

Horseshoe Valley, West Antarctica. The location and extent of BIAs and snow drift tails help to 

validate the simple qualitative model, showing how the Snow_Blow model can simulate areas of 

surface snow drift erosion and accumulation using basic AWS measurements and a local DEM. 

The snow drift simulations show that BIAs in Horseshoe Valley are currently maintained by 

stable meteorological conditions, where surface winds are influenced by the complex 

topography to create spatially variable surface snow drift erosion and accumulation patterns. 

These investigations support previous views of persistent katabatic wind flow in Horseshoe 

Valley by Hein et al. [2016b], and the assertion that BI moraine formation requires these 

unrelenting winds. By simulating a variety of prevailing wind directions and past ice sheet 

elevations, use of the Snow_Blow model has discovered that even modest changes in prevailing 

katabatic wind flow or ice thickness will greatly alter the location and size of BIAs. Model 

outputs suggest that thresholds to initiate system reorganisation must exist in areas of complex 

topography, in mountainous regions. In Horseshoe Valley the greatest change in the extent of 

surface snow drift erosion is simulated when Patriot Hills was largely buried by an ice sheet 300 

m thicker than present, when katabatic wind strength is reduced. These findings have profound 

implications for the understanding of ice flow in Horseshoe Valley, as taller nunataks, including 

the Independence, Marble and Liberty Hills would have retained their BIAs ~10 ka ago, 



197 
 

allowing older packets of ice and entrained debris, and indeed previously scoured BI to travel 

through Horseshoe Glacier, and associated BIA systems for a long time. As Patriot Hills BIA is 

much younger, and smaller as a result of nunatak orientation and elevation (relative to the ice 

sheet surface), old packages of ice are just emerging at the ice surface, and as such, they 

represent considerable opportunity for investigating historic ice sheet flow and past climatic 

conditions (through isotope analysis) in West Antarctica. As BIAs help to bring sediment up to 

the surface (Chapter 7), these findings also provide support for blue ice moraine investigations 

in Horseshoe Valley. Critically, the Snow_Blow model outputs reveal that snow drift conditions 

in Horseshoe Valley have transformed over time and that present snow accumulation and snow 

drift erosion patterns would be affected by any future changes in ice sheet elevation or 

prevailing wind direction. This study therefore highlights the sensitivity of BIAs to changing 

meteorological conditions, whilst revealing that nunatak elevation (relative to the ice surface) 

and nunatak orientation (relative to the prevailing wind direction) are critical to BIA stability 

and subsequent ice flow phenomenon. 
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CHAPTER 9 

Discussion 

 

9.1 Introduction 

This thesis has used ice penetrating radar to investigate englacial stratigraphy in order to 

determine BIA stability (Chapter 5), Holocene flow reconfigurations of the IIS catchment 

(Chapter 6) and debris entrainment mechanisms in Horseshoe Valley and the wider Weddell Sea 

sector of the WAIS (Chapter 7). Snow drift simulations have also been employed to investigate 

past and present katabatic wind scour and snow accumulation patterns (Chapter 8). In this 

chapter these findings will be combined to review historic ice flow conditions in Horseshoe 

Valley (section 9.2) and to discuss the stability of the upper IIS catchment, in and around the 

Ellsworth Mountains (section 9.3). Section 9.4 will then address the significance of detecting 

englacial debris by geophysical means, as well as the importance of tracing debris 

accumulations from continental sources to Southern Ocean delivery. Finally, section 9.5 will 

review the advantages and disadvantages of using the novel snow drift model Snow_Blow 

(detailed in Chapter 8) and suggest considerations for future model simulations. 

 

9.2 Historic i ce flow conditions in and around Horseshoe Valley 

Although advances in satellite technology have recently allowed the current ice flow trajectory 

and velocity of remote areas of the WAIS, such as Horseshoe Glacier to be determined (e.g. 

Rignot et al. [2011a]), the geophysical investigations documented in this thesis provide the first 

account of former ice flow conditions in Horseshoe Valley in the Southern Heritage Range. In 

order to approximately date surface and subsurface features, a number of published datasets 

have been consulted. These local datasets include age-depth modelling calculations at the BIR 

[Siegert et al., 2013], deuterium isotope climate reconstructions from Patriot Hills BIA [Turney 

et al., 2013] and cosmogenic nuclide dating of boulders along the Southern Heritage Range 

[Hein et al., 2016a, 2016b]. As a result of these investigations, a time line of ice flow changes in 

and around Horseshoe Valley has been compiled to produce Table 9.1.  
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Table 9.1. A summary of ice flow conditions in and around Horseshoe Valley during the 
Holocene from work pertained in this thesis, and acknowledged literature sources: *Rignot et al. 
[2011a], �‚Casassa et al. [2004], �¸Rivera et al. [2014] �¨Westoby et al. [2016], +Hein et al. [2016b].  

 

Date 
 

Horseshoe 
Glacier 

 

BIAs in Horseshoe 
Valley 

 

Independence 
Trough ice flow 
 

 

Ellsworth Trough 
ice flow 

 

Present 
conditions 

 

�x Ice flowing 
<16 m a-1 *  

�x Stable mass 
balance 
conditions �‚ 

 

 

�x Large BIAs in front of  
Liberty, Marble, 
Patriot and 
Independence Hills 

�x Stable BIA extents�¸ 
�x Active BIA moraine 

systems �¨ 
 

 

�x Ice flowing at 35 
m a-1 *  

�x No BIAs along 
trough as nunataks 
only exposed on 
stoss side 
 

 

�x Ice flowing at 70 �± 
130 m a-1 *  

�x No BIAs as no 
exposed nunataks 

 

~400  
years  
before 
present 

�x Ice flowing 
<30 m a-1 *  

�x Stable mass 
balance 
conditions 

 

�x Large BIAs in front of  
Liberty, Marble, 
Patriot and 
Independence Hills  

�x Stable BIA extents�¸ 
�x Active BIA moraine 

systems �¨ 

�x Ice flowing at >35 
m a-1 *  

�x No BIAs along 
trough as nunataks 
only exposed on 
stoss side 

 

�x Ice flowing >70 m 
a-1 *  

�x No BIAs as no 
exposed nunataks 

 

~4,000  
years  
before 
present 

�x Ice flowing 
�•���������P���D-1 *  

�x Ice sheet 
elevations 
similar to 
present day 
conditions + 

�x BIAs in front of 
Liberty, Marble, 
Patriot and 
Independence Hills  

�x Each BIA was smaller 
than present day 
extents 

�x Active BIA moraine 
systems  

 

�x Conditions 
unknown as old ice 
has been advected 
out of  trough and 
there are no dating 
controls for former 
ice sheet elevations 

�x Conditions 
unknown as old 
ice has been 
advected out of 
trough and there 
are no dating 
controls for 
former ice sheet 
elevations 

 

~10,000 
years  
before 
present 

�x Ice flowing 
> 30 m a-1 *  

�x Ice sheet 
~400 m 
thicker than 
present + 

 

�x BIAs in front of 
Liberty, Marble and 
Independence Hills  

�x Each BIA was smaller 
than present 

�x Patriot Hills was 
buried, so BIA in 
leeward foreground 
became stagnant 
 
 

�x Conditions 
unknown as old ice 
has been advected 
out of trough and 
there are no dating 
controls for former 
ice sheet elevations 

 

�x Conditions 
unknown as old 
ice has been 
advected out of 
trough and there 
are no dating 
controls for 
former ice sheet 
elevations 
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 In Chapters 5 and 6 ice penetrating radar returns revealed that ice in Horseshoe Valley 

has been relatively slow flowing and isolated for at least the last ~4 ka. Continuous, 

conformable and parallel englacial stratigraphic features in the upper ice column of Horseshoe 

Glacier indicate that layers of snow and ice have steadily accumulated at the head of Horseshoe 

Valley during this time, where PISM perturbations suggest that ice has continuously migrated 

through the over-deepened trough, towards the local grounding line of the FRIS at Hercules 

Inlet. Although the majority of ice flow in Horseshoe Valley Trough has followed this well-

established route-way, GPR investigations and snow drift simulations reveal that some of the 

ice in Horseshoe Valley has been deflected upwards to compensate for katabatic wind erosion 

and sublimation of the ice surface on the leeward side of nunataks. Recent dating of ice along 

Patriot Hills BIA has revealed that this steady upwards flow phenomenon has encouraged ice as 

old as 30 ka to emerge at the surface [Turney et al., 2013]. As this old ice reaches the fresh BIA 

surface, previously entrained debris clasts are released through sublimation. This process has 

allowed thick BI moraines to accumulate along the leeward slopes of nunataks which define the 

Southern Heritage Range [Fogwill et al., 2012; Westoby et al., 2015, 2016]. 

 Whilst airborne RES transects reveal continuous internal stratigraphy in the upper ice 

column of Horseshoe Glacier (representative of steady snow accumulations and ice flow 

conditions over the past ~4 ka), discontinuous and buckled layers were found to dominate the 

lower ice column (see Chapter 6). These layers would have been deformed during a period of 

�H�Q�K�D�Q�F�H�G���L�F�H���I�O�R�Z���µ�V�Z�L�W�F�K �R�Q�¶���L�Q���U�H�V�S�R�Q�V�H���W�R���H�[�W�H�U�Q�D�O���I�R�U�F�L�Q�J�V����By reviewing relevant literature, 

it is suggested that this enhanced ice flow (occurring more than 4 ka ago) could have been 

promoted by increased ice surface elevations in Horseshoe Valley between ~3.5 ka ago and ~10 

ka ago, when ice was approximately 400 m thicker than present [Hein et al., 2016b]. This 

increased ice thickness would have amplified the gravitational acceleration of the ice flow, and 

altered basal conditions, which would have temporarily modified the internal flow dynamics of 

Horseshoe Glacier. Due to the topographic confinement of Horseshoe Glacier (which has been 

revealed by long cosmogenic nuclide exposure dates along nunataks [Hein et al., 2016a, 2016b], 

and thick basal ice units along highland plateaus �± documented in Chapter 6), it is now 



201 
 

understood that Horseshoe Glacier must have �µ�V�Z�L�W�F�K�H�G�� �R�Q�¶�� �D�Q�G�� �µ�R�I�I�¶�� �L�Q�� �U�H�V�S�R�Q�V�H�� �W�R�� �O�R�F�D�O�� �L�Fe 

accumulation changes (instigated by external forcings) during the Holocene.  

Even when ice in Horseshoe Valley was thicker, and flowing much faster, around 10 ka 

ago, snow drift simulations on former ice surface elevations (explored in Chapter 8) reveal that 

upwards ice flow in the vicinity of nunataks would have continued to maintain several BIAs in 

Horseshoe Valley throughout the Holocene (see Table 9.1). Although BIAs in front of the 

Liberty, Marble and Independence Hills would have been much smaller during this period (as a 

result of a reduced ice surface to nunatak elevation ratio and therefore limited katabatic wind 

scour on the leeward slopes), englacial debris would have continuously been released in front of 

the exposed mountain chains. The continual exposure of the tallest nunataks in Horseshoe 

Valley throughout the Holocene would therefore have contributed to long-term debris 

availability, entrainment, transportation and deposition processes in the Weddell Sea sector of 

the WAIS. However, whilst BIAs and associated BI moraine sequences were sustained in front 

of the tallest nunataks during the Holocene, it is important to recognise that smaller mountain 

chains like Patriot Hills would have been buried by the thicker ice accumulations ~10 ka ago. 

This would have altered local ice flow dynamics, as ice and entrained debris accumulations 

would have traversed the front of the buried mountain chain, on route to the local grounding 

line, and eventually the Southern Ocean (as opposed to flowing up towards a BIA surface). 

To conclude this section, this thesis has found that ice in Horseshoe Valley has been 

topographically confined, and therefore relatively isolated throughout the Holocene, at least. 

This has allowed �+�R�U�V�H�V�K�R�H���*�O�D�F�L�H�U���W�R���µ�V�Z�L�W�F�K���R�Q�¶���D�Q�G���µ�R�I�I�¶���L�Q�G�H�S�H�Q�G�H�Q�W�O�\���R�I���Q�Highbouring ice 

flows, as each tributary flow adapts to external forcings and internal ice dynamical changes 

independently. These findings show intermittent ice streaming in Horseshoe Valley, as well as 

the relative stability of BIAs and BI moraine systems in front of the tallest nunataks over long 

periods of time. 
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9.3 Stability of the upper Institute Ice Stream catchment 

Throughout this study, geophysical investigations and snow drift simulations have been 

employed to better understand the nature of ice flow in and around the Southern Heritage Range 

in the Ellsworth Mountains, in order to determine the stability of the upper IIS catchment and 

the Weddell Sea sector of the WAIS. By analysing the complex subglacial topography in and 

around Horseshoe Valley, this study has confirmed that tributary flows sourced near the 

Ellsworth Mountains rest on bedrock well below sea level, where geophysical returns have 

revealed even lower bed elevations than those published in Bedmap2 by Fretwell et al. [2013]. 

This low basal topography greatly increases the possibility of future unstable retreat of the 

grounding line in the Weddell Sea sector of the WAIS, should the grounding line position 

change in response to predicted climatic and/or oceanic forcing (detailed in Chapter 2). Whilst 

these fears have already been hypothesised by a number of authors who have investigated the 

main ice flows draining into the FRIS (e.g. Siegert et al. [2013]; Ross et al. [2014]; Bingham et 

al. [2015]), this thesis provides the first conclusive evidence for former ice flow reorganisation 

of the upper IIS catchment, when ice flows dramatically changed speed and direction in 

response to external forcings.  

 Complete re-organisation of the main IIS trunk ~400 years ago is now understood to 

have resulted from enhanced ice flow through the Independence and Ellsworth troughs, when 

thick, topographically confined ice flows began to spill out of their deep channelised systems 

and stream across the region now covered by the BIR (Table 9.1). As geophysical analysis has 

revealed slow and stable ice flow in Horseshoe Valley during this time, it is evident that each 

tributary flow in the upper IIS acts largely independently of one another. This exemplifies 

theoretical assumptions detailed in Chapter 2, which stress that internal flow controls in each ice 

stream will allow similar external forcings to be addressed in a number of ways.  

�,�Q���W�K�H���:�H�G�G�H�O�O���6�H�D���6�H�F�W�R�U���R�I���W�K�H���:�$�,�6�����W�K�H���H�[�D�F�W���W�L�P�L�Q�J�V���R�I���H�Q�K�D�Q�F�H�G���L�F�H���I�O�R�Z���µ�V�Z�L�W�F�K��

�R�Q�¶�� �D�Q�G�� �µ�R�I�I�¶��can be attributed to a number of local factors, including, but not limited to ice 

sheet dynamics, basal hydrology, sediment availability and trough morphology. So far, this 

discussion has shown how ice in Horseshoe Valley is largely protected from the main WAIS ice 
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flow by high nunataks on three sides. This makes Horseshoe Glacier much more stable than 

neighbouring ice flows, as ice can slowly accumulate or thin in the wide trough in response to 

external forcings without draining large proportions of the inland ice sheet or influencing 

neighbouring tributary flows. However, as adjacent troughs are only confined on two sides - 

often by subglacial highlands and basal ice sequences rather than nunataks, it is expected that 

external forcings will have a greater impact on the ice flows supported by the Independence and 

Ellsworth Troughs. Although the Independence and Ellsworth Troughs are more similar to one 

another, than to Horseshoe Valley, ice in the Ellsworth Trough currently flows at a much faster 

rate. By reviewing relevant literature, it is suggested that the fast ice flow speeds in the 

Ellsworth Trough could be promoted by enhanced basal lubrication, resulting from subglacial 

drainage into and out of the upstream Subglacial Lake Ellsworth [Vaughan et al., 2007] 

(introduced in Chapter 2, section 2.6). Combined with reduced frictional resistance along valley 

side walls from the buried highland plateaus which define the Ellsworth Trough, this study 

concludes that ice in Ellsworth Trough will be the first to react to changes in internal or external 

forcings. This makes ice in Ellsworth Trough the most unstable of all IIS tributary flows 

(sourced in and around the Ellsworth Mountains).  

 These findings suggest that ice flows in the Weddell Sea Sector of Antarctica are 

acutely sensitive to both external forcings and changes in internal ice sheet dynamics. Whilst 

external forcings (e.g. atmospheric and oceanic) are known to trigger and pace changes in ice 

sheet dynamics, this thesis has shown that a multitude of factors govern the location and flow 

regime of ice streams in this area of Antarctica, as well as the precise rate and timings of 

changes in ice flow dynamics. These differences have allowed ice streams in the upper IIS to 

�µ�V�Z�L�W�F�K�� �R�Q�¶�� �D�Q�G�� �µ�R�I�I�¶�� �L�Q�G�H�S�H�Q�G�H�Q�W�O�\�� �R�I�� �R�Q�H�� �D�Q�R�W�K�H�U���� �Z�K�H�U�H�� �H�Q�K�D�Q�F�H�G�� �L�F�H�� �I�O�R�Z��through deep 

trough systems has facilitated complete re-organisation of the main IIS trunk. These findings 

suggest that periods of enhanced ice flow, in conjunction with mass changes may have been 

regular during the Holocene and that recent ice stream switching in the Siple Coast and 

Amundsen Sea sectors are not unique in Antarctica, and could in fact characterise the decline of 
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the WAIS. As a result, these discussions are particularly relevant to the ice sheet modelling, 

climate and sea level communities.  

 

9.4 Significance of englacial debris detection 

Although englacial debris clasts have been detected in a number of alpine glacier 

systems, Chapter 7 provides the first detailed account of large debris concentrations within the 

WAIS, where over 9 ± 5 tera tonnes of debris has been approximated in Horseshoe Valley 

Trough (assuming an ice/debris ration of 80:20), through airborne RES analysis. This study 

exemplifies recent successes in ice penetrating radar data acquisition and processing, where 

debris clasts and particles in compressive BIAs and thick ice flows have been detected by a 

number of ice penetrating radar systems. Whilst this study has focussed on debris sources, and 

methods of debris entrainment in the Weddell Sea sector of the WAIS, it is expected that debris 

sources and englacial sediment incorporation in other areas of Antarctica will also vary spatially 

and temporally as a result of ice flow conditions, ice temperature, ice thickness, sediment 

availability and basal topography.  

As glaciers adjust to a changing climate, these controls will impact sediment 

availability, debris entrainment and debris transport routes through the glacial system. Should 

extraglacial debris volumes increase, as exposed rock-walls are de-buttressed by a thinning ice 

sheet, increased sediment availability and transfer could alter frictional stress at the glacial bed 

and modify ice flow speeds [Bell et al., 1998], change ice flow direction through long-term 

erosive processes [Harbor et al., 1988] and enhance sediment flux from continental sources to 

Southern Ocean delivery [Death et al., 2014; Hawkings et al., 2014].  This would increase the 

abundance of sediment-derived nutrients like bio-available iron (BioFe) in the Southern Ocean, 

which could enhance primary productivity and ultimately result in the drawdown of 

atmospheric CO2 in the southern hemisphere. Whilst coastal sediments [Tagliabue et al., 2009], 

dust [Jickells et al., 2005], sea ice [Edwards and Sedwick, 2001] and iceberg rafted debris 

[Raiswell and Canfield., 2012] are all well-established sources of BioFe (Figure 9.1), the 

transportation and deposition of BioFe-rich sediments from the Antarctic continent have yet to  
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Figure 9.1. Known sources and modelled spatial variability of Fe delivery to the Southern 
Ocean through a) iceberg inputs [Wadley et al., 2014], b) sediments (shelf) [Wadley et al., 2014] 
and c) aeolian and subglacial meltwater altered primary productivity [Death et al., 2014]. In 
each case, red colouration represents high Fe, while blue represents low Fe.   
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be considered in scientific literature or IPCC reports. As englacial debris transportation could 

play an important role in the negative climate feedback loop know�Q���D�V���W�K�H���
�)�(���K�\�S�R�W�K�H�V�L�V�¶�� it is 

imperative that continental debris sources in Antarctica are better understood and quantified. 

This is particularly important when other sources of BioFe are known to be decreasing, global 

temperatures are warming, and CO2 levels are rising at glacial terminations [Watson et al., 

2000]. Whilst these investigations are beyond the scope of this PhD it is suggested that future 

studies should use recent advancements in Terrestrial Laser Scanning and Structure-from-

Motion DEM differencing to quantify hillslope processes in Antarctica (e.g. Westoby et al. 

[2012, 2015]). This will improve magnitude/frequency curves of rock failures in Antarctica, and 

allow debris flux to be calculated from continental sources. Ice penetrating radar techniques 

should then be employed to detect and trace sediments through the glacial system, from 

continental source areas to the coastal shelf (e.g. Figure 9.2). 

 

9.5 Reviewing the Snow_Blow model 

As Mills et al. [Submitted] have recently coded Snow_Blow the discussion chapter of this thesis 

poses an appropriate location to assess the merits and pitfalls of the Snow_Blow model, 

particularly when simulations are run over complex mountainous topography. The main 

advantages and disadvantages of Snow_Blow wil l be presented before considerations for future 

investigations are discussed.  

 

9.5.1 Advantages of the Snow_Blow model 

�x User-friendly interface �± the model can run through an ArcGIS toolbox 

�x The model requires limited data input (a DEM and local meteorological data) 

�x Once the code has been modified in Python to include model inputs and user 

specifications simulations are quick to run 

�x Outputs are automatically saved after each iteration 

�x Katabatic wind erosion can be simulated over complex topography 
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Figure 9.2. Schematic diagram depicting how GPR systems could detect and trace sediments 
(as well as associated nutrients like BioFe) from continental sources to Southern Ocean 
delivery.  
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�x The model can simulate accumulation on, and behind a variety of topographic features, 

including low elevation moraine ridges and boulders resting on the ice surface 

�x Outputs define variations in the erosive strength of snow drift over the study site 

 

9.5.2 Disadvantages of the Snow_Blow model 

�x Metamorphism of the snow pack is not included in the model 

�x No feedback mechanisms are included, to stop the progressive erosion of BIA surfaces 

�x The number of iterations required will vary depending on the study site. This will be 

difficult to determine in areas where snow accumulation and erosional extents are not 

known 

�x As Snow_Blow simulations mimic the user-defined wind direction and surface 

topography from the DEM, it is difficult to accurately simulate historic snow drift, 

and/or predict future snow drift conditions 

�x Surface elevation changes as a result of progressive snow drift accumulation or erosion 

are not accounted for in the model 

 

9.5.3 Considerations for future investigations 

Chapter 8 has detailed how the Snow_Blow model, initially designed to interpret historic snow 

drift conditions in the Scottish Highlands (e.g. Purves et al. [1999a, 199b] and Mills et al. 

[Submitted]) has been successfully employed to determine the controls on katabatic wind 

erosion and snow accumulation in Horseshoe Valley, West Antarctica. The simple, qualitative 

Snow_Blow model has highlighted the relatively simplistic processes behind BIA formation and 

evolution, without the need for numerous user-inputs or complex and time-consuming 

algorithms. It is therefore suggested that future studies use the outputs from the Snow_Blow 

model as a guide, to explain local glaciological features like BIA moraine deposits and paleo 

BIA wind scour events. More complex flow models, like those developed by Grinsted et al. 
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[2003] can then be employed to quantify rates of upwards ice flow or BI moraine deposition. 

This limits the need to make the simple, qualitative model more complex.  

 

9.6 Summary 

This thesis has combined a number of ice penetrating radar surveys and BIA simulations to 

review historic ice flow conditions in Horseshoe Valley, and other upper IIS tributary flows. By 

comparing radar returns to published data sets, this thesis has refined age-estimates for ice 

streaming, tributary flow stagnation, ice stream reconfiguration, BIA formation and BIA 

evolution in the upper IIS catchment, in and around the Ellsworth Mountains. Dynamic changes 

in ice flow velocity have also been recorded within three distinct tributaries of the IIS, where 

results are consistent with the hypothesis that the LGM and Holocene drainage pathways within 

the Weddell Sea sector of the WAIS were different from those of the present-day [Larter et al., 

2012; Siegert et al., 2013], and that ice streams in this area are susceptible to changes associated 

with both internal and external forcings. These findings suggest that ice stream switching and 

mass changes in the Siple Coast and Amundsen Sea sectors of Antarctica are not unique to these 

sectors, and that the dynamic nature of ice flow in the IIS and its tributaries may have been 

regular during the Holocene and may characterise the decline of the WAIS. 

 During these investigations, innovative snow drift simulations have refined the controls 

on BIA formation and evolution and stressed the importance of analysing the detailed internal 

stratigraphy of BIAs when assessing the continuity of horizontal climate records. Improvements 

in ice penetrating radar acquisition and processing have also improved our understanding of ice 

flow processes in West Antarctica, as well as the controls on debris entrainment mechanisms 

within the Weddell Sea sector of the WAIS. These findings have opened up new possibilities 

for investigating potentially rich sources of BioFe within glacial systems, and ultimately CO2 

drawdown in the Southern Ocean.  
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CHAPTER 10 

Conclusions 

 

10.1 Introduction  

This concluding chapter will document the main findings from the thesis (section 10.2), before 

outlining how each of the objectives introduced in Chapter 1, section 1.2 have been met (section 

10.2). A brief summary of ice flow and ice sheet stability in and around Horseshoe Valley will 

then be provided in section 10.4, whilst section 10.5 will detail inherent limitations of the 

project. Finally, suggestions for future work, beyond the scope of this PhD will be outlined in 

section 10.5.  

 

10.2 Main findings 

This thesis has used a number of techniques to investigate the past and present behaviour of the 

West Antarctic Ice Sheet in and around Horseshoe Valley and the upper Institute Ice Stream 

catchment. In order to determine changes due to grounding line migration, ice streaming and ice 

accumulation under a changing climate this project has: 

 

1) Investigated the internal annual layers of Patriot Hills BIA, where it was noted that 

stable ice sheet flow and accumulation has been interrupted by two periods of erosion, 

indicative of paleo katabatic wind scour.  

 

2) Utilised numerical ice sheet models, ILCI plots and geophysical datasets to establish 

paleo ice flow direction in Horseshoe Valley. 

 

3) Examined airborne RES transects to establish that ice in Horseshoe Valley has remained 

slow-flowing and isolated for at least the past 4000 years.  

 

4) Analysed airborne RES transects from the Independence and Ellsworth Troughs, where 

buckled layers throughout the ice column document enhanced ice flow ~400 years ago, 
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revealing the source of paleo ice streaming over the region now covered by the 

Bungenstock Ice Rise. 

 

5) Re-created Holocene flow trajectories in the upper IIS catchment to reveal that ice in 

topographically confined tributaries has �µswitched on�¶ and �µoff�¶ in response to external 

forcings, associated with climate change.  

 

6) Used airborne RES to locate and trace over 9 ± 5 tera tonnes of englacial debris in 

Horseshoe Valley Trough (assuming an ice/debris ratio of 80:20). 

 

7) Established that debris in the Weddell Sea sector of the WAIS is entrained into local ice 

flows by folding, shearing, faulting and regelation processes, which are ultimately 

controlled by debris availability, ice flow, ice temperature and basal topography. 

 

8) Determined the sensitivity of katabatic wind driven snow erosion and accumulation to 

changes in ice sheet thickness and the prevailing wind direction using Snow_Blow. 

 

9) Outlined the controls on BIA formation and evolution in Horseshoe Valley. 

 

10.3 Reviewing objectives introduced in Chapter 1 

Objective 1: Analyse englacial stratigraphy within the Blue Ice Area at Patriot Hills to 

determine historic changes in ice flow and/or accumulation 

High resolution step-and-collect mode GPR data, collected by the Northumbria PulseEKKO 

system in 2013/2014 was used to determine the englacial stratigraphy of Patriot Hills BIA and 

to assess the continuity of a local BIA horizontal climate record (collected by Turney et al. 

[2013] in 2012). All radargrams were processed in ReflexW and examined in MATLAB and 

Opendtect to highlight prominent internal GPR reflectors within the BIA in 2D and 3D. 

Digitisation of the main transect line revealed numerous continuous and conformable dipping 

isochrones, separated by two discontinuities in the isochrone layers, where internal layers 

displayed divergence and truncation. By comparing geophysical returns to cosmogenic nuclide 

derived ice thickness measurements, PISM perturbations, surface velocity measurements and 



212 
 

ILCI plots it was evident that these discontinuities must represent unconformities in the 

stratigraphic record, caused by paleo katabatic wind scour in front of the Liberty and Marble 

Hills. Combined with more regional GPR returns, these findings reveal that the ice flow 

direction in Horseshoe Valley has remained unchanged since the LGM, even as the ice sheet 

thickness fluctuated in response to external forcings associated with climate change.  

 

Objective 2: Determine the internal structure of the West Antarctic Ice Sheet in the upper 

Institute Ice Stream catchment to establish historic changes in regional ice streaming  

Airborne RES data collected in and around the Ellsworth Mountains by Dr. Neil Ross 

(Newcastle University) and collaborators during an aero geophysical investigation of the IIS 

and MIS in 2011/2012 was collated to investigate the subsurface structure of the WAIS in the 

upper IIS catchment. Radargrams were imaged in 2D and 3D (in MATLAB and Opendtect 

respectively), before internal layers were manually digitised in Adobe Illustrator and 

automatically classified, using an ILCI developed by Karlsson et al. [2009]. Internal layer 

buckling within the topographically confined Independence and Ellsworth troughs provided the 

first evidence for former enhanced ice flow in the upper IIS tributaries, during the mid- to late-

Holocene. These enhanced ice flows dramatically altered the configuration of the main IIS trunk 

by sourcing ice flows which streamed across the region now covered by the Bungenstock Ice 

Rise. Although buckled layers were also detected within the slow-flowing ice of Horseshoe 

Valley Trough, a thick sequence of surface-conformable layers in the upper ice column revealed 

slowdown more than ~4000 years ago and as such, enhanced flow switch-off here was not 

attributed to late Holocene ice flow reorganisation. The dynamic nature of the IIS and its 

�W�U�L�E�X�W�D�U�L�H�V�� �V�X�J�J�H�V�W�V�� �W�K�D�W�� �L�F�H�� �V�W�U�H�D�P�� �µ�V�Z�L�W�F�K�� �R�Q�¶�� �D�Q�G�� �µ�R�I�I�¶ may have been cyclical during the 

Holocene as a result of ice thickness changes, and that these fluctuations may characterise the 

decline of the WAIS in this area. 
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Objective 3: Investigate debris entrainment mechanisms in the Weddell Sea sector of the West 

Antarctic Ice Sheet 

In order to investigate debris entrainment mechanisms in Horseshoe Valley, highly reflective, 

steeply dipping englacial debris bands and hyperbolic radar returns - detected in previously 

analysed GPR and airborne RES transects (collected to fulfil objectives 1 and 2) were imaged in 

2D and 3D using Reflexw and Opendtect respectively. Similar features in ground RES profiles 

across Horseshoe Valley (collected by Andrés Rivera from the Centro de Estudios Científicos) 

and an airborne RES survey of the Evans Ice Stream (and proximal upland catchment) 

(processed by Dr. David Ashmore from the University of Aberystwyth) were also analysed to 

investigate the spatial variability of debris sources and debris entrainment mechanisms in the 

Weddell Sea sector of the WAIS. By comparing radar detected debris reflectors to the 

subglacial bed and internal stratigraphic features, this thesis has recognised a number of debris 

entrainment mechanisms. Whilst thin and compressive BI flows on the leeward side of nunataks 

promote debris entrainment through regelation processes at the ice/bed interface and thrust 

faulting, more regional surveys evidence debris entrainment at depth, along englacial layer folds 

at the glacial margin. This latter debris entrainment mechanism allows debris clasts to be 

incorporated at the local thermal boundary by shearing and englacial layer folding, which occurs 

in response to the compressive conditions imposed at the interface between faster and warmer 

ice flow around bedrock obstacles, and slower, colder ice flow above obstacles. As regelation 

processes, faulting and folding are all controlled by ice flow, ice temperature, ice thickness, 

sediment availability and bedrock topography, internal and external forcings modulate these 

controls, where changes can alter ice flow routes and velocities as well as debris entrainment 

mechanisms and sediment transport fluxes from continental sources to Southern Ocean delivery. 

These findings indicate that it is now critical to detect and trace englacial sediments through the 

Antarctic Ice Sheets, as ice flows and topographic features respond to a changing climate. 
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Objective 4: Model the transport of snow by wind in Horseshoe Valley and compile a sensitivity 

analysis to determine the conditions necessary to initiate and maintain Blue Ice Areas in front 

of the Patriot, Independence and Marble Hills. 

Dr. Stephanie Mills (Plymouth University) and collaborators novel Snow_Blow model was 

employed to improve the understanding of surface snow drift conditions and blue ice erosion in 

Horseshoe Valley, using a 40 m resolution SPOT DEM, and local wind data from an automatic 

weather station situated at Patriot Hills BIA. Initial simulations validated the simple, qualitative 

model, where results showed that Snow_Blow could accurately identify sheltered zones and 

areas of surface erosion in Horseshoe Valley. The Snow_Blow model revealed that BIAs in 

Horseshoe Valley are currently maintained by stable conditions, where strong and persistent 

katabatic wind flows are re-routed over the surface by the complex topography, resulting in 

spatially variable snow erosion and accumulation patterns. By simulating a variety of prevailing 

hypothetical wind directions and past ice sheet elevations (constrained by cosmogenic nuclide 

dating of exposed nunataks [Hein et al., 2016b] and deuterium isotope analysis of paleo ice 

surfaces [Turney et al., 2013]), the Snow_Blow model has revealed that even modest changes in 

the prevailing wind direction or ice sheet elevation would greatly alter the location, size and 

orientation of BIAs. Model outputs suggest that thicker ice accumulations <10 ka ago would 

have resulted in stepped changes in the spatial extent of BIAs in Horseshoe Valley, where 

simulations reveal that only the tallest nunataks could have supported BIAs ~10 ka ago, when 

ice in Horseshoe Valley was approximately 400 m thicker than present. This investigation has 

highlighted the sensitivity of BIAs to changes in ice sheet elevations and the prevailing wind 

direction, whilst discovering that BIAs accompanying the highest nunataks are the most stable 

and that mountain orientation, relative to the prevailing wind direction has a strong control on 

the location, orientation and extent of wind-driven snow erosion, and therefore BIAs.  

 

10.4 Ice flow and ice sheet stability in and around Horseshoe Valley 

This thesis has established that ice flow in Horseshoe Valley has remained relatively slow 

flowing and stable for at least the last ~4000 years. The topographic confinement of Horseshoe 
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Valley has largely suppressed the ingress of the main WAIS flow during this time, allowing 

local snow and ice accumulations (and associated englacial debris) to be directed through the 

over deepened valley, towards the local grounding line of the FRIS at Hercules Inlet. Although 

the majority of ice in Horseshoe Valley flows towards the Weddell Sea, some ice and debris is 

deflected upwards, to compensate for the sublimation and erosion of the ice surface at BIAs. 

This ice flow phenomenon has enabled so-�F�D�O�O�H�G�� �µ�K�R�U�L�]�R�Q�W�D�O�� �F�O�L�P�D�W�H�� �U�H�F�R�U�G�V�¶�� �W�R�� �E�H�� �F�R�O�O�H�F�W�H�G 

across Patriot Hills BIA , where paleo katabatic wind scour from BIAs further up valley has 

resulted in unconformities in the paleo climate record. Upward ice flow has also allowed debris 

clasts to be entrained and transported through the ice and towards the BIA surface, generating 

extensive debris accumulations in front of the nunataks that delimit Horseshoe Valley. The 

existence of thick moraine sequences in front of the tallest nunataks, combined with katabatic 

wind simulations over paleo ice surfaces (defined by [Hein et al., 2016b]) reveal that BIAs have 

been relatively consistent features in Horseshoe Valley, although BIAs accompanying smaller 

nunataks, like Patriot Hills, would have been buried ~10 ka ago, when the ice in Horseshoe 

Valley was ~400 m thicker [Hein et al., 2016b].  

 Although ice flow in Horseshoe Valley has remained relatively stable over the past 

~4000 years, the occurrence of buckled ice layers deep within Horseshoe Glacier has revealed 

former, enhanced ice streaming which would have occurred in response to changes in the 

climate. Similar �H�Q�K�D�Q�F�H�G���L�F�H���I�O�R�Z�����U�H�S�U�H�V�H�Q�W�L�Q�J���W�K�H���µ�V�Z�L�W�F�K-�R�Q�¶���R�I���,�,�6���W�U�L�E�X�W�D�U�\���I�O�R�Z���K�D�V���E�H�H�Q��

found in neighbouring Independence and Ellsworth Troughs, where buckled ice layers 

throughout the ice column reveal the source for Holocene ice flow reconfigurations of the main 

IIS trunk. Combined, these findings reveal that ice flows draining into the FRIS are sensitive to 

changes in the climate, where geophysical investigations have revealed that adjustments in the 

position of the grounding line, ice accumulation and/or ice streaming have allowed ice flows to 

�µ�V�Z�L�W�F�K���R�Q�¶���D�Q�G���µ�R�I�I�¶ independently of one another. This has permitted resultant changes in ice 

flow patterns in the Weddell Sea Sector of West Antarctica. Although the topographically 

confined tributaries of the upper IIS largely prevent flow switching and water piracy, typical of 

ice flows in the Ross sea sector of the WAIS [Anandakrishnan and Alley, 1997], there is now a 
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growing concern that enhanced ice flow could quickly transform tributary flows of the IIS into 

discrete ice stream outlets. As the subglacial topography in the upper IIS lies well below sea 

level, enhanced ice flow would greatly increase the potential for more widespread and possibly 

irreversible ice sheet drawdown (as previously suggested by Ross et al. [2014]). The findings of 

this thesis are therefore significant for the ice sheet modelling, climate and sea level 

communities as results and discussions can inform users about paleo ice flow configurations and 

former ice sheet conditions in the Weddell Sea sector of West Antarctica. 

 

10.5 Limitations of this research 

Although geophysical methods have allowed the englacial stratigraphy and internal structure of 

Horseshoe Valley and the upper IIS catchment to be determined there are some inherent 

limitations related to geophysical data collection and analysis and snow drift model simulations. 

As these restrictions are common in remote areas of Antarctica, most of the limitations listed 

below could be remedied by further research. 

 

1. As areas suitable for landing aircraft are limited in the vicinity of the Ellsworth 

Mountains, aircraft equipped with RES systems often had to take off and/or land in 

front of Patriot Hills, and consequently some internal features cannot be discerned from 

radargrams traversed in this area. To eliminate this concern in the future, fly overs 

should be made across aircraft runways when the RES system is warm and fully 

operational. 

 

2. Although this study has provided a unique insight into Holocene ice flow 

configurations, the exact timing of events is restricted by a lack of precise dating in the 

IIS catchment. In order to constrain the timings of events a wider variety of dating 

methods (e.g. tephrochronology) needs to be performed on the horizontal climate record 

which was sampled across Patriot Hills BIA in 2012. Deep, vertical borehole extraction 

and analysis of the Bungenstock Ice Rise would also be helpful.  
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3. As airborne geophysical surveys were not designed to source and detect englacial debris 

at depth, there are only a few locations where englacial debris can be imaged in 3D. In 

order to fully understand the source and entrainment mechanisms of debris entrainment 

in Antarctica more radar survey lines need to be collected and analysed across the 

continent. 

 

4. Although the Snow_Blow model can determine areas which are susceptible to surface 

erosion and accumulation in areas of complex surface topography, it is difficult to 

recreate former ice surface conditions so care must be taken when model outputs are 

used to investigate past ice sheet configurations. A lack of feedback mechanisms in the 

model also limits its use for understanding the evolution of BIAs. 

 

10.6 Suggestions for further work 

Recent advances in ice penetrating radar data acquisition and processing have enhanced our 

ability to detect englacial features and understand ice sheet stability. As a direct result of this 

increased resolution and efficiency a number of suggestions can be made for further work; 

 

 

1. More BIAs should be examined with step-and-collect mode GPR as traditional 

continuous surveying speeds cannot capture the detailed internal stratigraphy of BIAs. 

 

 

2. More radargrams need to be collected and analysed throughout the WAIS and EAIS to 

determine the regional controls on debris availability and entrainment in Antarctica.  

 

 

Although both of these suggestions are important, the last point provides the greatest scope for 

further work. In order to quantify englacial debris accumulations and fully appreciate the 

controls on debris entrainment in Antarctica it is critical to investigate the movement of debris 

through the glacial system in more detail. It is therefore suggested that future studies quantify 

landslide hillslope processes using novel Structure-from-Motion photographic surveying 

[Westoby et al., 2012] or more conventional terrestrial laser scanning (e.g. Westoby et al., 
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[2015]) to allow DEM differencing of surfaces. GPR in step-and-collect mode should then be 

employed to investigate englacial debris entrainment mechanisms in other mountainous areas of 

Antarctica, whilst continuous GPR surveying or RES should be used to detect and trace the 

transportation of debris through the glacial system, from continental sources to the coastal shelf. 

Results will improve magnitude-frequency curves of rock failures in Antarctica and increase our 

understanding of landscape development and evolution in Antarctica. It will also allow debris 

transport routes through the Antarctic glacier system to be quantified. This is particularly 

relevant under a changing climate, where it is expected that surface warming could alter glacial 

thermal regimes and trigger slope instability in Antarctica, allowing more debris to move from 

continental sources to the coastal shelf, and ultimately the Southern Ocean. As continental 

sediments are released into the Southern Ocean, essential nutrients will also be deposited, where 

it is anticipated that essential nutrients like BioFe could enhance primary productivity in the 

ocean, and, ultimately, improve the drawdown of atmospheric CO2. As englacial sediment 

transportation could play an important role in the negative climate feedback loop known as the 

�
�)�(�� �K�\�S�R�W�K�H�V�L�V�¶���� �L�W�� �L�V�� �L�P�S�H�U�D�W�L�Y�H�� �W�K�D�W�� �F�R�Q�W�L�Q�H�Q�W�D�O�� �G�H�E�U�L�V�� �V�R�X�U�F�H�V�� �D�U�H�� �E�H�W�W�H�U�� �X�Q�G�H�U�V�W�R�R�G�� �D�Q�G��

quantified, particularly as other sources of BioFe are decreasing, global temperatures are 

warming, and CO2 levels are rising at glacial terminations. 
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