
1 
 

An experimental study on tool wear behaviour in micro 
milling of nano Mg/Ti metal matrix composites 

 
Xiangyu Teng1, Dehong Huo1,2*, Islam Shyha3

, Wanqun Chen1, Eugene Wong1 

 
1 Mechanical Engineering, School of Engineering, Newcastle University, Newcastle Upon Tyne, 
NE1 7RU, UK 
2 The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 
400044, China 
3 Department of Mechanical and Construction Engineering, Northumbria University at Newcastle; 
Newcastle upon Tyne, NE1 8ST, UK 
 
*Correspondence: dehong.huo@newcastle.ac.uk; Tel.: +44-191-208-6230 

Abstract 

With the development of MMCs, the mechanical properties of MMCs with small volume fraction of nano-

sized particles were found to be even superior to that with larger content of micron-sized particles. However, 

the improved mechanical properties of MMCs bring tremendous challenges such as premature tool failure 

Tiin machining process. This study exhibits an investigation on tool wear in micro milling of magnesium 

based MMCs reinforced with 1.98 Vol.% of nano-sized titanium particles using 0.5mm diameter two-flute 

tungsten carbide micro endmills. The tool wear was characterised both quantitatively and qualitatively by 

observing tool wear patterns and analysing the effect of cutting parameters on flank wear, reduction in tool 

diameter, cutting forces, surface roughness, and burr formation. A finite element model was established to 

understand matrix deformation and interaction between tool-particle and further explain the tool wear 

phenomena observed. Additionally, cutting performance using AlTiN coated and uncoated was also 

investigated. The results indicated that the main wear mechanisms were identified as flank wear and edge 

chipping due to abrasive wear and chip adhesion in uncoated micro endmills. These wear mechanisms were 

confirmed by chip formation process produced by finite element modelling (FEM). It was also observed 

that the largest tool wear was occurred at smallest feed per tooth (0.75µm/tooth) and smallest wear was 

mailto:dehong.huo@newcastle.ac.uk


2 
 

occurred at largest feed per tooth (3µm/tooth). Also, the effect of BUE on tool wear and surface generation 

was studied. 

Keywords: Micro milling; Tool wear; Metal matrix composites; Nanocomposite; Nanoparticles 

1 Introduction 

The demand for miniaturised components with complex features in micro scale has rapidly increased in 

many applications such as bioengineering, aerospace, medical and electronics in the last decade. Recently, 

a number of micro manufacturing technologies such as micro milling, micro electrical discharge machining, 

and micro laser machining have emerged to satisfy such demands. Micro milling is recognised as one of 

the most versatile micro manufacturing processes with high accuracy and machining capability of a wide 

range of engineering materials and hence has received considerable attention in the last decade [1]. In order 

to produce micro features, micro endmills ranging from 50-1000µm are typically used [1]. Although micro 

milling is kinematically similar to its conventional counterpart, a number of issues including size effect and 

minimum chip thickness arisen from the fact that uncut chip thickness is comparable with the cutting edge 

radius in micro milling [1]. These issues make the material removal mechanism in micro milling different 

from that in conventional milling. These down size related problems encountered with micro milling also 

limit its industrial applications. 

Metal matrix composite materials have received considerable interests to replace conventional materials in 

various applications benefiting from their high specific strength, ductility, toughness and outstanding 

corrosion and fatigue resistance [2]. However, their superior mechanical properties, heterogeneous and 

anisotropic nature bring significant challenges in terms of premature and excessive tool wear and poor 

machined surface quality following machining processes. Therefore, the widespread applications of 
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conventional micro-sized reinforced MMCs are impeded due to their poor machinability caused by the 

reinforcement which is commonly harder than most of the commercial available tool materials [3, 4]. Li 

and Seah [5] conducted a comprehensive experimental study on tool wear mechanism during machining of 

Al/SiC MMCs using tungsten carbide tools. In this research, abrasive wear mode was found to be the main 

wear mechanism. Tool wear acceleration caused by interference between particles appeared when the 

weight fraction of particles reached a critical value. Pramanik et al. [6] created a finite element model to 

study the matrix deformation and interaction between tool-particle in orthogonal machining, and tool wear 

was found to be the result of the debonded particles sliding over the rake face and cutting edge leading to 

high localised stress during tool-particles interaction. Bhushan et al. [7] reported that a less severe tool wear 

was found in turning of conventional aluminium alloys compared with their composites using carbide and 

PCD inserts and abrasive wear was observed at the main wear mechanism. Ghani et al. [8] investigated 

milling and turning of AlSi/AlN MMCs using carbide cutting tools. Their results showed that a uniform 

flank wear caused by abrasion was the dominant wear mechanism. Although there are several research 

works on tool wear when machining MMCs with micro-sized particles, there are very limited publications 

on tool wear during micro machining of MMCs reinforced with nano-sized particles. Li et al. [9] reported 

that tool wear did not contribute to the variation of surface roughness in micro machining of SiC/Mg MMCs 

with nano-sized particles. Teng et al. [10] carried out an experimental investigation on micro milling of 

MMCs reinforced with nano-sized Ti and TiB2 particles. Their results showed that chip adhesion effect 

which resulted in high cutting force and worse surface finish was more significant during machining of 

MMCs reinforced with Ti particles rather than that with TiB2 particles. Additionally, the increase of volume 

fraction of reinforcement could lead to severe coating peeling off when coated tools were used.  

The phenomena such as size effect and minimum chip thickness caused by scaling effects in micro milling 
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play an important role in material removal mechanism and underlying mechanics during machining process. 

The size of the ploughing region where the material elastically deforms and recovers to its original position 

after the tool pass cannot be neglected in micro milling. Consequently, it induces high friction and stress 

between the cutting tool and the materials which in turn makes the cutting edge the most loaded portion of 

micro endmills [11]. Therefore the unpredictable tool life and premature failure of micro endmills were 

recognised as the major barrier in micro milling [12]. Unlike in the conventional machining, wear 

mechanism in micro milling is diverse and complex. Additionally, tool wear measurement is challenging 

due to miniaturised size of endmills in micro milling. A literature survey shows that the current state-of-

the-art lacks a generic tool wear criterion and assessment methods in micro milling. Some attempts in 

investigating tool wear mechanisms in micro milling of engineering materials are summarised below. 

Tansel et al. [12] studied the wear mechanism of micro endmills when machining aluminium and mild steel 

and concluded that tool wear was mainly caused by fatigue and stress induced chip-clogging breakage. 

Another study carried out by Tansel et al. [13] established a relationship between tool wear and cutting 

force characteristic based on neural-network method in micro milling of aluminium and steel. A stable 

increase in cutting force with the progression of tool wear was observed. The latter caused an 

effectiveness/sharpness loss of cutting edge. Conversely, a sudden increase in cutting force before tool 

failure was reported in machining of steel. Rahman et al. [14] also investigated the effect of tool wear 

development on cutting forces where non-uniform wear and chip adhesion were observed on both major 

and minor cutting edges. This resulted in an increase of cutting forces and leads to an early tool failure. The 

abrasion wear which was found to be the dominant wear mode during micro milling of copper 101 using 

tungsten carbide tool was reported by Filiz et al. [15]. The stress acting on the cutting edge was found to 

dramatically increased when the material was elastically removed due to the size effect at low feed per 
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tooth. Therefore, greatest tool wear in the form of flank wear was experienced at low feed per tooth. The 

reduction of tool diameter was utilised as a measure of tool wear. Ucun et al. [16] compared the performance 

of endmills with different coatings during micro milling of Inconel 718 super alloy. The flank wear and 

cutting edge corner wear due to abrasive and chipping were reported as the dominant wear modes. Also, 

local fracture was observed due to the excessive friction on the part where smeared by workpiece material 

dominated by the size effect at small uncut chip thickness. Less chipping was observed in the coated tool 

which could be attributed to the extra toughness of the coating material when compared to the uncoated 

ones. Imran et al. [17] stated that the abrasion was initially experienced on TiN coated tool in wet drilling 

and followed by a cyclic workpiece adhesion on the cutting edge. Finally, the micro chipping which 

gradually increased the edge blunting was observed near the cutting edge due to the diffusion of workpiece 

materials into WC-Co binder with the assistance of adhesion effect. Overall, previous studies investigated 

tool wear mechanisms only based on the experimental method. Moreover, different wear mechanisms 

showed a diversity in machining different engineering materials but there are very limited publications 

available in investigating wear mechanism during machining MMCs with nano-sized particles. 

This paper presents a comprehensive experimental investigation on the tool wear in micro milling of 1.98 

Vol.% Mg/Ti MMCs under dry cutting condition. Tool wear was assessed by tool diameter reduction and 

flank wear. The wear mechanisms and effect of cutting parameters including feed per tooth and cutting 

speed on cutting force, surface roughness and burr formation was discussed by considering the size effect 

with the progression of tool wear. The performance of coated and uncoated cutting tool was compared. 

Both experimental and modelling techniques were employed in order to obtain a clear understanding of the 

wear mechanism. 
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2 Experimental methods 

Magnesium turnings of 99.9% purity, supplied by ACROS Organics, New Jersey, USA were used as the 

base matrix. Reinforcement consist of pure titanium powder of 30-50 nm supplied by US Research 

Nanomaterials. Mg/Ti MMC was synthesized using the disintegrated melt deposition (DMD) technique. 

DMD process involved superheating the magnesium turning and the titanium powder reinforcement that 

were arranged in a multi-layered arrangement to 750°C in a graphite crucible under an inert argon 

atmosphere followed by stirring the molten melt at a speed of 465 rpm for 6 minutes using a twin blade 

(pitch 45°) mild steel impeller coated with Zirtex-25. The melt is then released from the base of the crucible, 

disintegrated by two jets of argon orientated normal to the melt stream and deposited onto a metallic 

substrate. The preforms were machined to remove the outer layer and cut into small billets. The billets are 

soaked in a constant temperature furnace at 400°C for 1 hour before being hot extruded at 350°C using an 

extrusion ratio of 20.25:1 on a 150 tonne hydraulic press to obtain 8mm diameter rods which were used for 

characterization studies. Further details of the DMD processing technique have been described elsewhere 

[insert new ref 2 and ref 18 by Ganesh]. The distribution of nano Ti particles within Mg/Ti MMCs was 

observed through Scanning electron microscope (SEM) in Figure 1. 
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Figure 1. Distribution of nano Ti particles in Mg/Ti MMCs [18] 

Two flutes uncoated and AlTiN coated micro-grain tungsten carbide endmills with nominal cutting diameter 

(D) of 0.5−0.02𝑚𝑚𝑚𝑚
+0.00𝑚𝑚𝑚𝑚  mm and helix angle of 20° were used. The dimension and geometry of the micro 

endmill are illustrated in Figure 2, 4 & 5. The cutting edge radius of new tools was measured using SEM 

and was estimated to be 2.0 µm in average (Figure 4(b)). As the flank wear and reduction in effective tool 

diameter affect the machining accuracy and surface integrity, the effective tool diameter DE and average 

flank wear VBA were used as tool wear criteria and measured as shown in Figure 3. Flank wear VB is defined 

as the band width in a direction perpendicular to the original cutting edge where the grinding marks from 

manufacturing process were removed by abrasive and chipping worn marks on the flank face of endmill. 

The measurement of flank wear was carried out at four consistent positions at different endmill and an 

average value, VBA, was computed. All endmills were selected from the same batch to eliminate the effect 

of tool manufacturing errors. 
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Figure 2. Dimension of the micro endmill (uncoated & coated) 

         

Figure 3. Measurement of (a) flank wear, VB and (b) effective tool diameter (DE) 

 
Figure 4. Top view of SEM micrograph for (a) worn tool (Tool #1), (b) & (c) new tool (uncoated endmill). 

 
Figure 5. Side view of SEM micrograph for (a) worn tool (Tool #1), (b) & (c) new tool (uncoated endmill). 

Magnesium based metal matrix composites (Mg/Ti MMCs) reinforced with 1.98 Vol.% nano-sized titanium 
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particles (approx. 30-50 nm) was used as workpiece throughout the research. The lightweight Mg-Ti 

nanocomposites has higher specific mechanical strength when compared to pure magnesium. Metallic 

reinforcements such as titanium with superior mechanical properties was found to produce an acceptable 

compromise in ductility compared to the addition of ceramic reinforcements SiC, Al2O3 and TiC MMCs. 

The mechanical properties of Mg/Ti MMCs are shown in Table 1. 

Table 1 Mechanical properties of 1.98 Vol.% Mg/Ti MMCs  

Density 
(g/cm3) 

0.2 Yield Strength 
(MPa) 

Ultimate tensile 
strength (MPa) 

Ductility 
(%) 

Microhardness 
(HV) 

Grain size 
(µm) 

1.793 162 ± 5 231 ± 12 7.7 ±0.1  70±2 1.25 ± 0.25 

Micro milling experiments were undertaken on an ultra-precision desktop micro-machine tool (Nanowave 

MTS5R) equipped with a high speed spindle (max 80,000rpm). The spindle runout was measured to be less 

than 2 µm. Total volume of 620 mm3 of workpiece material was removed in each set of experiment. 6 sets 

of machining experiments and the cutting parameters for each set of experiment are detailed in Table 2. 

Brand new tools were measured before performing each set of experiments. Full-immersion slot milling 

with a constant axial depth of cut of 100 µm was employed in all experiments. For each set of experiment, 

a total volume of 620 mm3 of workpiece material was removed at 4 even intervals, i.e. a volume of 155mm3 

of workpiece materials in each interval. The tools were then measured after each interval. The cutting forces 

along the X, Y and Z axis was measured using a Kistler piezoelectric dynamometer (9256C2). A scanning 

electron microscope (SEM, Hitachi TM3030) was used to acquire the micrographs of the worn tools. A 

white light interferometer (Zygo NewView 5020) was employed to measure surface roughness of the 

machined slot.  

Table 2 Cutting parameters for each set of experiment 

Exp set/Tool # 
Cutting speed, 

Vc (m/min) 
feed per tooth, 
𝒇𝒇𝒛𝒛(µm/tooth) 

Tool 
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1 31.4 3 uncoated 
2 62.8 3 uncoated 
3 125.6 3 uncoated 
4 62.8 0.75 uncoated 
5 62.8 1.5 uncoated 
6 62.8 3 AlTiN-coated 

 

3 Results and discussion 

3.1 Tool wear mechanism analysis 

A better understanding of tool wear benefits from observing highly magnified SEM micrographs of the 

endmills. A significant reduction in the effective tool diameter is observed (an example is shown in Figure 

3(b)) due to the decrease of cutting edge radius. All endmills used in this experiment exhibited similar wear 

behaviour. A significant amount of volume loss of tool material is found in the main cutting edge in all tools 

used in this experiment. A comparison between the new tool and worn tool (Tool #1) on the side and top 

view is illustrated in Figure 4 and Figure 5. Figure 6 shows the progression of tool wear against different 

cutting conditions. It is noted that a significant amount of tool wear with the combination of non-uniform 

flank wear and cutting edge chipping is found on the side cutting edge and flank face of all five uncoated 

endmills. For the AlTiN coated tools, delamination and flank wear were the dominant wear mechanism. 

3.1.1 Effect of cutting speed 

Figure 7 illustrates the effect of cutting speed on flank wear and reduction in tool diameter with the 

increasing cutting volume at constant depth of cut and feed per tooth. Understandably, flank wear and 

reduction in tool diameter increases with cutting volume under all cutting parameters. As shown in Figure 

8(a), the largest wear was experienced at cutting speed of 31.4 m/min. The largest trend on the progression 

of flank wear was observed at the cutting speed of 62.8 m/min, namely, this cutting speed produces the 
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smallest wear after cutting volume of 155 mm3 and largest wear after cutting volume of 620 mm3 compared 

with other cutting speed. In addition, the flank wear obtained at 125.6 m/min provided the most stable trend 

and the smallest flank wear after cutting volume of 620 mm3 was measured. The smallest tool diameter 

reduction is obtained at the largest cutting speed of 125.6m/min (Figure 7(b)), which is consistent with the 

trend in flank wear. 
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Figure 6.SEM micrographs of the tool wear progression under various cutting conditions 
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Figure 7. The effect of cutting speed on the progression of (a) flank wear; (b) reduction in tool diameter at constant 

feed per tooth of 3µm/tooth and depth of cut of 100 µm. 

Figure 8 and 9 illustrate the SEM micrographs and EDS spectra of the uncoated endmills after cutting 

volume of 620 mm3 of the workpiece material and at a constant feed per tooth of 3µm/tooth, depth of cut 

of 100 µm with cutting speed of 31.4m/min, 62.8m/min and 125.6m/min. Extensive abrasive marks and 

chipping wear along the flank face and cutting edges are observed from cutting speed of 31.4 and 62.8 

m/min (Figure 8 (a & b)). In addition, the chip adhesion was observed on the flank face of Tool #1 and Tool 

#2 (Figure 8 (a & b)). The EDS spectra performed on flank face (Figure.8 (c & d)) shows the presence of 

excessive element of magnesium (Mg), and titanium (Ti). Chip adhesion can cause high friction during the 

interaction between the flank face and workpiece which is more evident in elastic dominated machining 

process. Additionally, the existence of titanium element on flank face from EDS spectra would confirm the 

abrasive effect contributed by hard reinforced particles. Based on this assumption, it is thought that local 

stressing would be induced on the cutting edge and flank face, which is a consequence of the hard 

reinforcement abrading through the cutting edge especially during elastic dominated cutting zone. 

Conversely, it can be seen from the EDS spectra obtained from the flank face (Figure 9(b)) that the chip 

adhesion effect is not evident and tool wear is considerably reduced at the cutting speed of 125.6m/min. 
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Small amount of flank wear with only partial chipping is observed at cutting edge, which indicates that the 

gradual abrasive wear dominates the cutting process. At the initial cutting stage, small amount of built-up 

edge (BUE) is found after cutting volume of 155 mm3 at cutting speed of 125.6m/min and feed per tooth 

of 3µm/tooth (Tool #3 at Figure 6). This is believed to be the main reason to protect the cutting tool from 

chipping and flank wear. The friction condition at the tool-material interface is affected by the built-up edge 

that acts as a protecting layer preventing the cutting edge being in contact with workpiece during machining 

process [19].  

 
Figure 8. SEM micrographs and EDS spectra of uncoated endmills after cutting volume of 620 mm3 from (a)(c) Tool 

#1 (cutting speed of 31.4m/min), (b)(d) Tool #2 (cutting speed of 62.8m/min) at feed per tooth of 3µm/tooth and depth 

of cut of 100 µm (with adhesion effect). 
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Figure 9. SEM micrographs and EDS spectra of uncoated endmill after cutting volume of 620 mm3 from Tool #3 

(cutting speed of 125.6 m/min) at feed per tooth of 3µm/tooth and depth of cut of 100 µm (without adhesion effect). 

With regards to the effect of cutting speed on the average cutting force, Figure 15(a) reveals a stable increase 

in the average cutting force with the smallest increasing rate at 125.6m/min compared with that obtained 

from 31.4 m/min and 62.8m/min. This trend can be reasonably associated with the accumulation of material 

in front of the cutting edge which prevents it from edge chipping and rounding. This can be confirmed by 

the fact that cutting tool diameter obtained at 125.6m/min exhibits the smallest reduction compared with 

other cutting speeds due to the abrasive and chipping wear on the cutting edge which were the main reason 

causing the reduction in effective tool diameter. 
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worn endmill (Tool #4) is shown in Figure 6. The most severe flank wear with edge chipping was found 

after cutting volume of 620 mm3. Based on the observation of EDS spectra (Figure 11), chip adhesion was 
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thickness starts from zero at the initial contact with the workpiece, followed by an increase to its maximum 

value as the tool rotates ninety degree, and then decrease to zero when cutting edge leaves workpiece. As a 

result, the ploughing region in each tool passing cycle at small feed per tooth is larger when compared with 

that at larger feed per tooth and the ploughing effect could dominate the cutting process when the uncut 

chip thickness is close to the minimum chip thickness. The ploughing effect could cause a significant 

portion of materials to be rubbed underneath the cutting edge and elastically deformed, and the workpiece 

material recovers to its original position without proper chip formation after the cutting edge passes, which 

induces a higher cutting force. Therefore, the abrasive wear mechanism resulting in a large flank wear and 

edge chipping is induced at small feed per tooth of 0.75µm. This can be contributed to the high frictional 

and normal stress experienced by cutting edge which exceeds the strength of the tool materials during each 

tool passing [20]. Additionally, unlike turning process, the intermittent material removal mode and 

instantaneous changing uncut chip thickness in micro milling produce high frequency shocking loads to 

cutting edges and hence results in the edge chipping. This is believed to be another important contributing 

factor to higher tool wear rate. At higher feed per tooth, shear mode dominates most of the cutting process 

which leads to a uniform distributed stress on the cutting edge, resulting in a reduced tool wear rate. 
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Figure 10. The effect of feed per tooth on the progression of (a) flank wear; (b) reduction in tool diameter at constant 

cutting speed of 62.8 m/min and depth of cut of 100 µm. 

 
Figure 11. SEM micrographs and EDS spectra of uncoated endmill after cutting volume of 620 mm3 from Tool #4 

(feed per tooth of 0.75µm/tooth) at cutting speed of 62.8 m/min and depth of cut of 100 µm. 
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coated tool. Figure 13(a) shows SEM micrograph of the AlTiN coated tool after cutting volume of 620 mm3. 
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A complete coating delamination was found along the flank face and cutting edge with the effect of 

machining stress. However, cutting edge was found intact without chipping which indicates a gradual 

abrasive wear. Additionally, a large presence of tungsten which is the main element of tool material was 

found on EDS spectra obtained from the area marked in Figure 13(a). The abrasive wear caused by hard 

titanium particles and the poor adhesion between the coating materials and the tool base substrate likely 

contributed to the coating delamination. 

 
Figure 12. The effect of tool coating on the progression of reduction in tool diameter at constant feed per tooth of 

3µm/tooth, cutting speed of 62.8 m/min and depth of cut of 100 µm. 

 

Figure 13. SEM micrographs and EDS spectra of coated endmill after cutting volume of 620 mm3 from Tool#6 at 

constant feed per tooth of 3µm/tooth, cutting speed of 62.8 m/min and depth of cut of 100 µm. 
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3.1.4 Simulated interaction between nanoparticle and cutting tool 

To further investigate the chip formation process and interaction between the particles and cutting edge, a 

heterogeneous two-dimensional finite element model (FEM) was established to simulate micro scale 

orthogonal cutting of magnesium based MMCs reinforced with nanosized SiC particles using 

ABAQUS/Explicit. It can be seen from Figure 14(a) that an irregular shear zone was formed in front of the 

rake face and cutting edge with stress magnitude of 470 MPa at initial engagement. As the tool moves 

(Figure 14(b)), the material was rubbed by cutting edge and a crack is initiated near the shear zone. As the 

cutting progresses, a crack was completely formed resulting in a segmented chip formation. In addition, the 

largest von Mises stress of 943.5 MPa observed at the particle was embedded within the chip root and came 

in contact with the cutting edge (Figure 14(c)). This confirms the assumption that high local stress induced 

on the cutting edge resulted in the abrasive effect. The above-mentioned process repeats after the formation 

of segmented chips (Figure 14(d)). A high von Mises stress was then induced near the flank face as the tool 

fully engaged with the workpiece. This can be the evidence of high friction induced on the flank face due 

to the effect of chip adhesion. 

(a) 
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Figure 14. Chip formation process of micro orthogonal machining of MMCs with nano-particles 

3.2 Cutting force 

To gain a better understanding of the effect of tool wear on the machinability, an average cutting force was 

calculated by collecting the peak-to-valley forces for each revolution and 500 revolutions was collected in 

total. Figure 15 presents the variation of average cutting force with the progression of tool wear under 

various cutting speed, feed per tooth and tool coating. The cutting force obtained from new tool was also 

captured (labelled at volume of 0 mm3). It can be seen from Figure 15 (a) that the largest cutting force is 

experienced at cutting speed of 31.4m/min after cutting volume of 620 mm3 although this cutting condition 

can produce the smallest tool wear in terms of flank wear and diameter reduction. A stable increase in the 

cutting force was observed from cutting volume 0 to 620 mm3 at the cutting speed of 125.6m/min that 

corresponds to the variation of flank wear.   

Irregular 
Shear zone (a) (b) 

(c) (d) 
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Figure 15. Variation of average cutting force with progression of tool wear under the effected by (a) cutting speed at 

feed per tooth of 3µm/tooth and depth of cut of 100 µm; (b) feed per tooth at cutting speed of 62.8 m/min and depth of 

cut of 100 µm; (c)tool coating 

With regard to the influence of size effect on the tool wear, Figure 15 (b) shows the effect of feed per tooth 

ranging from 0.75 to 3 µm/tooth (cover the minimum chip thickness) on the cutting force. It can be noted 

that the smallest feed per tooth of 0.75µm/tooth produced the largest cutting force, which can be considered 

as the main reason to cause the largest tool wear. Also, a sudden increase in the cutting force was seen from 

cutting volume 0 to 155 mm3, which was correlated to the observation where significant flank wear and 

chipping on endmill after cutting volume of 155 mm3 (Tool #4, Figure 6) compared to other experiments. 

To further confirm the significant role played by size effect on the tool wear, Figure 16 compares the 
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variation of flank wear and specific cutting force with the effect of feed per tooth. The specific cutting force 

can be defined as the chip load required to remove a unit volume of material and it was calculated by 

dividing the cutting force by the section area of chips. As illustrated in Figure 16, highest specific cutting 

force was experienced at lowest feed per tooth, while the specific cutting force at each feed per tooth 

increases with the flank wear. In addition, nearly 5 times larger of the specific cutting force (72.8 J/mm3) 

at feed per tooth of 0.75µm/tooth can be found than that at 3 µm/tooth (18.25 J/mm3) after cutting volume 

of 620 mm3. By considering this information, it can be thought that the ratio of cutting edge radius to uncut 

chip thickness increases so that the material removal mechanism dominated by elastic deformation is 

becoming evident with the progression of flank wear.  

 

Figure 16.The comparison between the flank wear and specific cutting force with the effect of feed per tooth at the 

cutting speed of 62.8m/min, depth of cut of 100µm. 

For the effect of tool coating on the cutting force, it is interesting to note from Figure 15 (c) that the cutting 

force obtained from coated tool exhibits higher values from cutting volume 155 to 620 mm3 than that from 

uncoated tool. This can be correlated with the delamination effect induced at the initial stage of cutting 

(cutting volume of 155 mm3) which increases the cutting edge radius. 
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3.3 Surface roughness & burr formation 

In order to clearly understand the relationship between the tool wear and surface quality, average surface 

roughness Ra was measured for all samples (Figure 17). It can be seen from Figure 17(a) that at the constant 

depth of cut of 100µm with a feed of 3 µm/tooth, cutting speed of 62.8m/min generates the lowest surface 

roughness. In contrast, the surface roughness obtained at 125.6m/min is the highest. As known that the 

deterioration can be induced on the surface roughness due to existence of BUE under certain machining 

conditions. This might be contributed to the adhesion effect of the BUE (Figure 19) on the machined surface. 

Some loose portion of BUE is thought to be adhered to the bottom surface of micro channels, which results 

in a deteriorated surface roughness. As expected, the highest surface roughness is obtained by the tool with 

large wear at smallest feed (0.75 µm/tooth). At this feed rate, the material is removed by relatively large 

cutting edge radius causing severe edge chipping (Figure 18). This indicates that the surface generation 

mechanism is dominated by ploughing and elastic deformation effect. The surface roughness decreases with 

increasing feed per tooth. This confirms the fact that the shearing mechanism becomes more dominant at 

larger feed rate. The results show a good agreement with the wear measurement. With regards to the effect 

of tool coating on surface roughness at Figure.17 (c), minor variation was observed in surface roughness 

results which indicate that coating has limited impact on surface quality. 

To qualitatively compare burr formation at different cutting conditions and correlate its size with tool wear 

progression, SEM micrographs of the top burr at various cutting volumes were obtained (Figure 20). It can 

be seen that the burr formation is strongly dependent on tool wear conditions especially in the down milling 

side Figure 20 (a- d). At the feed rate of 3µm/tooth (Figure 20(a-c)), an increased size of the top burrs was 

observed with the increase of tool wear. Additionally, cutting speed of 125.6m/min (Figure 20 (c)) generates 

the slots with the smallest burr size, which corresponds to the smallest tool wear obtained at these cutting 
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conditions. At the cutting speed of 62.8m/min (Figure 20 b, e, d), the rise of feed per tooth from 0.75 to 3 

µm/tooth results in a reduced burr size. The largest burrs formation is obtained at smallest feed per tooth of 

0.75 µm Figure 20 (d). 

 

Figure 17. Surface roughness under effected by (a) cutting speed at feed per tooth of 3µm/tooth and depth of cut of 

100 µm; (b) feed per tooth at cutting speed of 62.8 m/min and depth of cut of 100 µm; (c) tool coating at feed per feed 

per tooth of 3µm/tooth, cutting speed of 62.8m/min and depth of cut of 100 µm. 

 

0.05

0.1

0.15

0.2

0.25

0.3

0 155 310 465 620

Su
rf

ac
e 

ro
ug

hn
es

s (
µm

)

Cutting volume (mm3)

(a)

31.4
m/min

62.8
m/min

125.6
m/min

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 155 310 465 620

Su
rf

ac
e 

ro
ug

hn
es

s (
µm

)

Cutting volume (mm3)

(b)

0.75
um/tooth

1.5
um/tooth

3
um/tooth

0.05

0.1

0.15

0.2

0.25

0 155 310 465 620

Su
rf

ac
e 

ro
ug

hn
es

s (
µm

)

Cutting volume (mm3)

(c)

coated

uncoated



25 
 

 
Figure 18. Top view of worn endmill obtained at Tool #4 (cutting speed of 62.8m/min, feed per tooth of 0.75 µm and 

depth of cut of 100 µm)  

 
Figure 19. Built-up edge formed on cutting edge corner at Tool #3 (cutting speed of 125.6m/min, feed per tooth of 3 

µm and depth of cut of 100 µm)  
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Figure 20. Burr formation at varying Experiment: (a)Experiment.1, cutting speed of 31.4m/min, feed per tooth of 

3µm/tooth; (b) Experiment 2, cutting speed of 62.8m/min, feed per tooth of 3µm/tooth; (c) Experiment 3, cutting speed 

of 125.6m/min, feed per tooth of 3µm/tooth; (d) Experiment 4, cutting speed of 62.8m/min, feed per tooth of 

0.75µm/tooth; (e) Experiment 5, cutting speed of 62.8m/min, feed per tooth of 1.5µm/tooth at constant depth of cut of 

100 µm. 

4. Conclusions 

This paper presents a comprehensive experimental investigation on the effect of cutting parameters and tool 

condition on the progression of tool wear in terms of flank wear and reduction in tool diameter when micro 

milling of 1.98 Vol.% Mg/Ti MMCs. The relation between tool wear and the cutting force, surface 

roughness and burr size was also investigated. Moreover, tool wear behaviour for uncoated and coated tools 

was compared. The following conclusions can be drawn: 

• Flank wear and edge chipping due to abrasive wear and chip adhesion were observed as the main 

wear mechanisms during all cutting conditions for uncoated endmills. This has been confirmed by 
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the chip formation process established using finite element modelling (FEM) 

• The largest tool wear was generated at the lowest feed per tooth of 0.75µm/tooth whereas the 

smallest wear was experienced at the highest feed of 3 µm/tooth. Meanwhile, the highest average 

cutting force and surface roughness were obtained at the highest tool wear. This phenomenon was 

attributed to the elastically dominated materials removal mechanism in small feed, namely, size 

effect.  

• At 3 µm/tooth feed per tooth and depth of cut of 100 µm, built-up edge (BUE) was found at the 

cutting edge in particular at the cutting speed of 125.6m/min. And a smaller tool wear along with 

the highest surface roughness was observed when compared to that at 62.8m/min and 31.4m/min. 

This can be explained by the existence of BUE. 

• A faster reduction rate was observed at the uncoated tool resulting a higher value after cutting 

volume of 620 mm3 comparing with coated tool. Abrasive wear mechanism and poor adhesion of 

coating to the tool substrate were considered as the main reasons for coating delamination which 

was found to be the main wear mode. Chip adhesion was not observed on all cutting tools.  
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