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Abstract

In this paper, a simple beam theory accounting for shear deformation effects with one unknown

is proposed for static bending and free vibration analysis of isotropic nanobeams. The size-

dependent behaviour is captured by using the nonlocal differential constitutive relations of

Eringen. The governing equation of the present beam theory is obtained by using equilibrium

equations of elasticity theory. The present theory has strong similarities with nonlocal Euler-

Bernoulli beam theory in terms of the governing equation and boundary conditions. Analytical

solutions for static bending and free vibration are derived for nonlocal beams with various types

of boundary conditions. Verification studies indicate that the present theory is not only more

accurate than Euler-Bernoulli beam theory, but also comparable with Timoshenko beam theory.

Keywords: Nanobeam, Nonlocal elasticity theory, Shear deformation beam theory, Bending,

Vibration

1. Introduction

In recent years, the emergence of nanotechnology in high-tech devices requires a proper

understanding of the mechanical behaviours of small-scale structures, which are considerably

influenced by the size effects [1]. In general, the classical continuum theories failed to ac-

curately predict the responses of such structures as they dismiss the size effects. In order to

capture these effects, two different approaches have been proposed including atomistic and

high-order continuum mechanics. Comparing to the former, the later approach is more popular

in practice due to its simplicity and computational efficiency. Currently, there are are various

high-order continuum theories developed to describe the size-dependent phenomenon. Among

those, the nonlocal elasticity theory proposed by Eringen [2] is widely used in the literature to
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for nano structures. This theory states that the stress at a point in continuum depends on the

strains of all points in the body instead of being only determined by the strains at that point.

By using the nonlocal elasticity theory, a large number of papers published in the literature

attempted to investigate the size effects on the behaviour of nanobeams in accordance with

various beam theories such as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory

(TBT) and high-order shear deformation beam theories. Those investigations were carried out

for bending ([3–9]), buckling ([10–14]) and vibration analyses ([15–20]). The nonlocal elas-

ticity theory was also employed to study the size-dependant behaviours of functional graded

nanobeams ([21–34]). It is well-known that the EBT underestimates deflection and overesti-

mates buckling load and natural frequencies of thick beam due to neglecting the shear defor-

mation effects. The TBT is capable of accurately predicting the response of thick beam, but it

requires a shear correction factor, which is not always easy to be determined. To overcome this

drawback, a number of high-order shear deformation beam theories were introduced, and only

few of them are cited here ([3, 30, 31, 35–37]). These high-order shear deformation theories,

however, require at least two variables and consequently two governing equations to describe

the behaviours of beams, and thus it is not convenient to use.

In this study, a simple high-order shear deformation beam theory involving only one vari-

able is proposed to study static bending and vibration analyses of nanobeams. The displace-

ment field of the present theory is based on the simple shear deformation theory of Shimpi et

al. [38], in which the equilibrium equations of elasticity theory is exploited to derive the gov-

erning equation. The nonlocal elasticity theory of Eringen [2] is employed to consider the size

effects. Analytical solutions for the transverse deflections and natural frequencies with various

boundary conditions are developed. Numerical results are also computed and compared with

those predicted by the EBT and TBT to illustrate the accuracy and efficiency of the present

study.

2. Simple shear deformation beam theory

The displacement field of Shimpi et al. [38] for homogeneous isotropic beams is given as

follow

u1 = −zdwb
dx

+

(
z

4
− 5z3

3h2

)
dws
dx

(1a)

u3 = wb + ws (1b)
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in which wb and ws denote the bending and shear displacements of a point on the midplane of

the beam, and h is the thickness of the beam. In the present displacement field, it can be seen

that the in-plane displacement is neglected since the stretching and bending deformations are

uncouple in the cases of homogeneous isotropic beams. Furthermore, the quadratic distribution

of transverse shear stress across the thickness of the beam is observed. The non-zero stresses

are expressed by constitutive relations below

σx = Eεx; σxz = Gγxz (2)

where E and G are Young’s modulus and shear modulus, respectively. The linear strains are

given by

εx = −z d
2wb
dx2

+

(
z

4
− 5z3

3h2

)
d2ws
dx2

(3a)

γxz =

(
5

4
− 5z2

h2

)
dws
dx

(3b)

For two-dimensional problem of elasticity theory, the equilibrium equations without body

forces are stated as
dσx
dx

+
dσxz
dz

= ρü1 (4a)

dσxz
dx

+
dσz
dz

= ρü3 (4b)

where the dot-superscript convention denotes the differentiation with respect to time, and ρ is

the mass density. The equilibrium equations can be rewritten in terms of stress resultants by

multiplying Eq. (4a) with z and then integrating the result and Eq. (4b) over the cross-section

along with applying boundary conditions σxz = 0 at z = ±h/2 and σz = −q (x) at z = h/2.

The resulting equations are given by

dM

dx
− V − ρI dẅb

dx
= 0 (5a)

dV

dx
+ q (x)− ρA (ẅb + ẅs) = 0 (5b)

where the bending moment M and shear force V are defined as follow

M =

h/2∫
−h/2

σxzbdz = −EI d
2wb
dx2

(6a)

V =

h/2∫
−h/2

σxzbdz =
5AG

6

dws
dx

(6b)
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in which

(A, I) = b

h/2∫
−h/2

(
1, z2

)
dz (7)

where b is the width of the beam. Substituting Eq. (6) into Eq. (5), the shear component ws can

be expressed with respect to the bending component wb as follow

ws =
6

5GA

(
−EI d

2wb
dx2

+ Iρẅb

)
(8)

Therefore, the displacement field can be rewritten in terms of wb as

u1 = z
dwb
dx

+
6

5GA

(
z

4
− 5z3

3h2

)(
−EI d

3wb
dx3

+ Iρ
dẅb
dx

)
(9a)

u3 = wb +
6

5GA

(
−EI d

2wb
dx2

+ Iρẅb

)
(9b)

It can be seen that there is only one unknown variable in the displacement field, and conse-

quently only one governing equation is required to describe the behaviour of the beam. The

governing equation is derived by using Eqs. (5), (6) and (8) as presented below

EI
d4wb
dx4

+ ρAẅb +
6ρ2I

5G

....
w b − ρI

(
1 +

6E

5G

)
d2ẅb
dx2

= q (x) (10)

3. Simple nonlocal beam theory

The well-known nonlocal elasticity theory proposed by Eringen [2] states that the stress at

a point in an elasticity continuum not only depends on the strains at that point but also on the

strains at all other points in the body. The constitutive relations for the nonlocal beams can be

expressed as follow:

σx − µ
d2σx
dx2

= Eεx (11a)

σxz − µ
d2σxz
dx2

= Gγxz (11b)

where µ = (e0a)2 is the nonlocal parameter with e0 being a material-defined constant, and

a being the internal length. Generally, the nonlocal parameter depends on various properties

such as boundary conditions, chirality, mode shape, number of walls and type of motions [39].

However, there is no comprehensive study made on investigating the values of the nonlocal

parameters so far. In this study, the nonlocal parameter e0a 6 2nm is utilized as a conservative

estimate for single-walled carbon nanotubes [40]. The constitutive equations of the nonlocal
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beam can be rewritten in terms of the stress resultants by multiplying Eq. (11a) with z and then

integrating the result and Eq. (11b) over the cross-section.

M − µd
2M

dx2
= −EI d

2wb
dx2

(12a)

V − µd
2V

dx2
=

5GA

6

dws
dx

(12b)

Using a similar approach presented in the previous section for the local beams, the nonlocal

constitutive equations are also substituted into the equilibrium equations in Eq. (5) to derive

the relationship between the bending and shear components of transverse deflection, which

yields

ws =
6

5GA

[
−EI d

2wb
dx2

+ ρI

(
ẅb − µ

d2ẅb
dx2

)]
(13)

Then, the displacement field in Eq. (1) can be rewritten in terms of only wb for nonlocal beams

as follow

u1 = z
dwb
dx

+
6

5GA

(
z

4
− 5z3

3h2

)[
−EI d

3wb
dx3

+ ρI

(
dẅb
dx
− µd

3ẅb
dx3

)]
(14a)

u3 = wb +
6

5GA

[
−EI d

2wb
dx2

+ ρI

(
ẅb − µ

d2ẅb
dx2

)]
(14b)

As given in Eqs. (14), the displacement field herein only involves one variable since the shear

component is expressed in terms of bending counterpart as in Eq. (13). Consequently, only

one governing is needed to be determined. By using Eqs. (5), (12), and (13), the governing

equation is obtain as

EI
d4wb
dx4

+ ρAẅb − ρI
d2ẅb
dx2

− µ
(
ρA

d2ẅb
dx2

− ρI d
4ẅb
dx4

)
+

6ρ2I

5G

....
w b − ρ

6EI

5G

d2ẅb
dx2

− µ
(
−ρI 6E

5G

d4ẅb
dx4

+
12ρ2I

5G

d2
....
w b

dx2
− 6µρ2I

5G

d4
....
w b

dx4

)
= −µd

2q (x)

dx2
+ q (x) (15)

Then, the shear force V and bending moment M are given as follow

V = −EI d
3wb
dx3

+ ρI
dẅb
dx

+ µ

(
−dq (x)

dx
+ ρA

dẅb
dx
− ρI d

3ẅb
dx3

+
6ρ2I

5G

d
....
w b

dx
− 6ρIE

5G

d3ẅb
dx3

− 6µρ2I

5G

d3
....
w b

dx3

)
(16a)

M = −EI d
2wb
dx2

+ µ

(
−q (x) + ρAẅb − ρI

d2ẅb
dx2

+
6ρ2I

5G

....
w b −

6ρIE

5G

d2ẅb
dx2

− 6µρ2I

5G

d2
....
w b

dx2

)
(16b)
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It should be noted that the present theory accounts for shear deformation effect without using

shear correction factor as in Timoshenko beam theory. The underlined terms in Eqs. (15) and

(16) represent for the shear components of the present theory. If these terms are eliminated,

Eqs. (15) and (16) convert to the counterparts of nonlocal EBT (see Reddy and Pang [4]).

4. Analytical solutions

In this section, analytical solutions for transverse deflections and natural frequencies of

nonlocal beams with length of L are presented. Four types of boundary conditions are consid-

ered including simply supported-simply supported (S-S), clamped-clamped (C-C), cantilever

or clamped-free (C-F) and propped cantilever or clamped-simply supported (C-S). It should

be noted that the present boundary conditions are not consistent variationally since they are not

defined based on principle of virtual work [17]. Each type of boundary condition is given as

follow:

For S-S beam:

u3 = 0 atx = 0, L (17a)

M = 0 atx = 0, L (17b)

For C-C beam:

u3 = 0 and
du1
dz

∣∣∣∣
z=0

= 0 atx = 0, L (18)

For C-F beam:

u3 = 0 and
du1
dz

∣∣∣∣
z=0

= 0 atx = 0 (19a)

M = 0 andV = 0 atx = L (19b)

For C-S beam:

u3 = 0 atx = 0, L (20a)

du1
dz

∣∣∣∣
z=0

= 0 atx = 0 (20b)

M = 0 atx = L (20c)

It should be noted that the clamped support is described by du1
dz

∣∣
z=0

= 0 instead of pre-

scribing a zero value for the slope dw
dx

= 0. In general, these two kinds of clamped support are

satisfied for thin beams, where the so-called effect of shearing force is relative small and can

be neglected. However, when the shear deformation is taken into account, the slope is fixed at

clamped support could lead to an underestimate of transverse deflections [41]. Therefore, the

6



boundary condition concerning the slope du1
dz

∣∣
z=0

= 0 is employed in this study henceforth to

describe the clamped support.

4.1. Bending solutions

In case of static bending analysis, the governing equation is obtained by eliminating time

derivative terms in Eq. (15) as follow

EI
d4wb
dx4

= −µd
2q (x)

dx2
+ q (x) (21)

The expressions for natural boundary conditions in Eq. (16) are reduced to

V = −EI d
3wb
dx3

− µdq (x)

dx
(22a)

M = −EI d
2wb
dx2

− µq (x) (22b)

A remarkable notice from the present bending governing equation is that it is virtually identical

to that of EBT in [3, 4]. Once the bending component wb in Eq. (21) is calculated, the total

transverse deflections of the present study is obtained by using Eq. (14b).

Consider a nonlocal beam under a distributed load of intensity q (x) acting in the z-direction,

the analytical solutions of linear bending and expressions for shear force V and bending mo-

ment M are obtained by integrating Eqs. (21) and (22) as follow

EIwb = −µ
x∫ η∫

q (ξ)dηdξ +

x∫ η∫ ξ∫ ς∫
q (ζ) dηdξdςdζ + c1

x3

6
+ c2

x2

2
+ c3x+ c4 (23a)

V = −
x∫

0

q (η)dη − c1 −
µdq (x)

dx
(23b)

M =

x∫ η∫
q (ξ)dηdξ − c1x− c2 (23c)

where c1− c4 are constants of integration, which are determined using boundary conditions. In

case of uniform distributed load of intensity q (x) = q0, Eq. (23) can be rewritten as

EIwb = −µq0
x2

2
+ q0

x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x+ c4 (24a)

V = −q0x− c1 (24b)

M = −q0
x2

2
− c1x− c2 (24c)
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Therefore, the transverse deflection is obtained by substituting Eq. (24a) into Eq. (14b) as

follow

u3 =
1

EI

(
−µq0

x2

2
+ q0

x4

24
+ c1

x3

6
+ c2

x2

2
+ c3x+ c4

)
− 6

5GA

(
−µq0 + q0

x2

2
+ c1x+ c2

) (25)

4.1.1. S-S beam

By employing the boundary conditions given in Eq. (17), the integrating constants are

obtained as follow

c1 = −q0L
2

; c2 = 0; c3 =
µq0L

2
+
q0L

3

24
; c4 = −6EIµq0

5GA
(26)

Substituting these constants into the expression of transverse deflection and bending moment

in Eqs. (24) and (25), the analytical solutions for simply supported beam are given by

w =
q0L

4

24EI

((x
L

)4
− 2
(x
L

)3
+
x

L

)
+

(
µ+

6EI

5GA

)
q0L

2

2EI

(
x

L
−
(x
L

)2)
(27a)

M = −q0L
2

2

((x
L

)2
− x

L

)
(27b)

It can be seen that the present solutions for transverse deflection and bending moment turn out

to those of EBT [4] if the shear component in the underlined term is dismissed. It also shows

that the inclusion of nonlocal parameter has a tendency to increase transverse deflections while

the bending moment is totally insensitive to the size effect. The maximum transverse deflection

and bending moment occur at x = L/2 and are given by

wmax =
q0L

4

384EI

[
5 +

48µ

L2
+

288EI

5GAL2

]
(28a)

Mmax =
q0L

2

8
(28b)

4.1.2. C-C beam

The constants of integration are obtained by using the boundary conditions in Eq. (18) as

follow

c1 = −Lq0
2

; c2 = q0

(
L2

12
+ µ− 3EI

10GA

)
;

c3 =
3q0L

20

EI

GA
; c4 = q0

6EI

5GA

(
L2

12
− 3EI

10GA

) (29)
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Using these constants in Eqs. (24) and (25), the expressions of transverse deflection and bend-

ing moment are given by

w =
q0L

4

24EI

[(x
L

)4
− 2
(x
L

)3
+
(x
L

)2]
+

3q0L
2

4GA

[(x
L

)
−
(x
L

)2]
(30a)

M = −q0L
2

12

[
1− 6

x

L
+ 6
(x
L

)2]
− q0µ+ q0

3EI

10GA
(30b)

It is observed that the present expressions for transverse deflection and bending moment be-

come identical to those given by nonlocal EBT [4] if the terms involving shear modulus as

underlined are omitted. It also seen that the transverse deflection of C-C beam is totally in-

sensitive to the size effect. The maximum transverse deflection and bending moment occur at

x = 0 and x = L/2 respectively, and are given by

wmax =
q0L

4

384J2
+

3q0L
2

16GA
(31a)

Mmax = −q0L
2

12

[
1 +

12µ

L2
− 18EI

5GAL2

]
(31b)

4.1.3. C-F beam

The constants of integration corresponding with boundary conditions Eq. (19) are obtained

as follow

c1 = −q0L; c2 =
q0L

2

2
; c3 = q0L

3EI

10GA
; c4 =

3EIq0
5GA

(
L2 − 2µ

)
(32)

Then, the transverse deflection of beam and bending moment are given by

w =
q0L

4

24EI

((x
L

)4
− 4
(x
L

)3
+ 6
(x
L

)2)
−q0L

2

2EI

[
µ
(x
L

)2
+

6EI

5GA

(x
L

)2
+

3EI

2GA

(x
L

)] (33a)

M = −q0L
2

2

(
1− x

L

)2
(33b)

It is seen that the solutions for cantilever nonlocal EBT is a subset of present solution if the

terms with shear modulus as underlined are dismissed. Besides, the bending moment is in-

dependent of size effects while transverse deflection tends downwards with the inclusion of

nonlocal parameter. The maximum transverse deflection and bending moment are obtained

when x = L and x = 0, respectively.

wmax =
q0L

4

8EI

(
1− 4µ

L

)
− 9q0L

2

10GA
(34a)

Mmax = −q0L
2

2
(34b)
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4.1.4. C-S beam

The constants of integration corresponding with boundary conditions Eq. (20) are obtained

as follow

c1 = −q0L (5GAL2 + 72EI + 120GAµ)

4 (10GAL2 + 36EI + 9EI)
;

c2 =
q0L

2 (5GAL2 − 18EI + 60GAµ))

4 (10GAL2 + 36EI + 9EI)
;

c3 =
3q0EIL (25GAL2 + 72EI + 60GAµ)

40GA (10GAL2 + 36EI + 9EI)
;

c4 = −3q0EI (140µEI − 5GAL4 + 18EIL2 − 20GAµL2)

10GA (10GAL2 + 36EI + 9EI)

(35)

The expressions for the transverse deflection and bending moment are derived by substi-

tuting those constants into Eqs. (24a) and (24c), respectively. The locations of maximum

deflection and bending moment are given by the roots of following equations

dw

dx
=

q0
EI

x3

6
+

c1
EI

x2

2
+

(
c2
EI
− 6q0

5GA
− µq0
EI

)
x− 6c1

5GA
+

c3
EI

= 0 (36a)

dM

dx
= −c1 − q0x = 0 (36b)

4.2. Free vibration solutions

For free vibration of the present nonlocal theory, the governing equation is obtained by

neglecting loading terms in Eq. (15) as follow

EI
d4wb
dx4

+ ρAẅb +
6ρ2I

5G

....
w b − ρ

(
µA+ I +

6EI

5G

)
d2ẅb
dx2

+

µρI

(
1 +

6E

5G

)
d4ẅb
dx4

− 12µρ2I

5G

d2
....
w b

dx2
+

6µ2ρ2I

5G

d4
....
w b

dx4
= 0

(37)

The periodic solutions are employed by assuming wb (x, t) = Wbe
iωt, in which Wb is the mode

shape, ω is the natural frequency and i =
√
−1. Then, substituting this expression into Eq. (37)

to obtain

p
d4Wb

dx4
+ q

d2Wb

dx2
− rWb = 0 (38)

where

p = EI − ω2ρIµ

(
1 +

6E

5G

)
+

6µ2ρ2I

5G
ω4 (39a)

q = ω2ρ

(
µA+ I +

6EI

5G

)
− 12µρ2I

5G
ω4 (39b)

r = ω2ρA− 6ρ2I

5G
ω4 (39c)
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The general solution for the differential equation given in Eq. (38) is

Wb = c1 sinαx+ c2 cosαx+ c3 sinh βx+ c4 cosh βx (40)

in which

α2 =
1

2p

(
q +

√
q2 + 4pr

)
(41a)

β2 =
1

2p

(
−q +

√
q2 + 4pr

)
(41b)

and c1 − c4 are the integration constants. It should be noted that α = β only when the rotary

inertia and size effect are neglected. By using Eqs. (14b), (16) and (40), the expressions for

transverse deflection, shear force and bending moment are given by

w = eiωt
[(

1− ω2 6ρI

5GA
+ α2

(
6EI

5GA
− ω2µ

6ρI

5GA

))
(c1 sinαx+ c2 cosαx) +(

1− ω2 6ρI

5GA
− β2

(
6EI

5GA
− ω2µ

6ρI

5GA

))
(c3 sinh βx+ c4 cosh βx)

] (42a)

V = eiωt
[
α
(
pα2 − s

)
(c1 cosαx− c2 sinαx)− β

(
pβ2 + s

)
(c3 cosh βx+ c4 sinh βx)

]
(42b)

M = eiωt
[(
pα2 − µr

)
(c1 sinαx+ c2 cosαx)−

(
pβ2 + µr

)
(c3 sinh βx+ c4 cosh βx)

]
(42c)

where s = ω2I2 + µr. From Eq. (41a), it can be deduced that

α4p− α2q − r = 0 (43)

Substituting Eq. (39) into Eq. (43), the quadratic equation of ω2 is given as follow

Pω4 −Qω2 +R = 0 (44)

in which

P = α46µ2ρ2I

5G
+ α212µρ2I

5G
+

6ρ2I

5G
(45a)

Q = α4µρI

(
1 +

6ρ

5G

)
+ α2ρ

(
µA+ I +

6EI

5G

)
+ ρA (45b)

R = EI (45c)

The natural frequencies are given by the roots of Eq. (44) as follow

ω2 =
Q±

√
Q2 − 4PR

2P
(46)
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It is shown Eq. (46) that two results of natural frequencies that are possibly obtained. From

a physical point of view, the attained result should be the one that producing real and smaller

natural frequency. In this study, for simpli�cation purpose, the rotary inertia is neglected.

Therefore, the solution for natural frequencies is simpli�ed to

! = � 2

s
EI
�A

vu
u
t

1

(1 + �� 2)
�

1 + � 2 6EI
5GA

� (47)

and relationship between� and� is given by

� 2

vu
u
t

1

(1 + �� 2)
�

1 + � 2 6EI
5GA

� = � 2

vu
u
t

1

(1 � �� 2)
�

1 � � 2 6EI
5GA

� (48)

It is observed that the solution for the natural frequencies of nonlocal EBT beams [4] is obtained

when the shear components in the underlined terms are ignored in Eqs. (47) and (48).

4.2.1. S-S beam

By using the boundary conditions in Eq. (17), the following coef�cient equations are ob-

tained

� c2 + � c4 = 0 (49a)

� (sin �L ) c1 + � (cos �L ) c2 + � (sinh �L ) c3 + � (cosh �L ) c4 = 0 (49b)

� c2 � � c4 = 0 (49c)

� (sin �L ) c1 + � (cos �L ) c2 � � (sinh �L ) c3 + � (cosh �L ) c4 = 0 (49d)

where

� = 1 + � 2 6EI
5GA

; � = 1 � � 2 6EI
5GA

(50a)

� = p� 2 � �r ; � = p� 2 + �r (50b)

The �rst and third equations givec2 = c4 = 0, therefore Eq. (49) is reduced to

c1A sin�L + c3B sinh�L = 0 (51a)

c1P sin�L � c3Q sinh�L = 0 (51b)
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The determinant of the coef�cient matrix of above equations must zero to obtain non-trivial

solutions, which means

�
� 2 + � 2

�
�

p + �r
6EI
5GA

�
sin�L sinh�L = 0 (52)

For nonzero values of� and�

sin�L = 0 ! � = n� / L (53)

The natural frequencies of S-S beam are given by

! =
� n�

L

� 2
s

EI
�A

vu
u
t

1
�

1 + �
�

n�
L

� 2
� �

1 +
�

n�
L

� 2 6EI
5GA

� (54)

4.2.2. C-C beam

The following coef�cient equations are obtained

� c2 + � c4 = 0 (55a)

c1� sin �L + c2� cos �L + c3� sinh �L + c4� cosh �L = 0 (55b)

� 	 c1 + � � c3 = 0 (55c)

c1� 	 cos �L � c2� 	 sin �L + c3� � cosh �L + c4� � sinh �L = 0 (55d)

where

	 = 1 � � 2 3EI
10GA

; � = 1 + � 2 3EI
10GA

(56)

Eliminatingc3 andc4 with the relations obtained from the �rst and the third equations in Eq.

(55), then one can be reduced to
�

� sin �L �
�
�

	�
�

sinh�L
�

c1 + � (cos �L � cosh�L ) c2 = 0 (57a)

� 	 (cos �L � cosh�L ) c1 �
�

� 	 sin �L + �
��
�

sinh�L
�

c2 = 0 (57b)

For non-trivial solutions of� and� , the determination of coef�cient matrix of above equations

should be zero, which gives

2 �
�

�
�

	�
��

�
�
�

��
	�

�
sin�L sinh�L � 2 cos�L cosh�L = 0 (58)

When the value of� is obtained from Eqs. (48) and (54), the natural frequencies of C-C beam

are given by Eq. (47).
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4.2.3. C-F beam

The following coef�cient equations are obtained

� c2 + � c4 = 0 (59a)

� � c1 + � � c3 = 0 (59b)

	 (sin �L ) c1 + 	 (cos �L ) c2 � � (sinh �L ) c3 � � (cosh �L ) c4 = 0 (59c)

� 	 (cos �L ) c1 � � 	 (sin �L ) c2 � � � (cosh �L ) c3 � � � (sinh �L ) c4 = 0 (59d)

Using the �rst and second equations in the remaining ones to obtain

�
	 sin �L +

�
�

��
�

sinh�L
�

c1 +
�

	 cos �L +
��
�

cosh�L
�

c2 = 0 (60a)

�
� 	 cos �L + �

��
�

cosh�L
�

c1 �
�

� 	 sin �L � �
��
�

sinh�L
�

c2 = 0 (60b)

A transcendental equation is obtained by setting the determinant of coef�cient matrix of above

equations as follow

	 2�� + � 2�� +
�

�
�

�� �
�
�

��
�

	� sin �L sinh�L

+ (�� + ��) 	� cos �L cosh�L = 0

(61)

The natural frequencies of cantilever nonlocal beams are obtained from Eq. (47) when the

value of� is determined from Eqs. (48) and (61).

4.2.4. C-S beam

The following coef�cient equations are obtained

� c2 + � c4 = 0 (62a)

c1� sin �L + c2� cos �L + c3� sinh �L + c4� cosh �L = 0 (62b)

� � c1 + � � c3 = 0 (62c)

c1	 sin �L + c2	 cos �L � c3� sinh �L � c4� cosh �L = 0 (62d)

Using the �rst and the third equations to eliminatec3 andc4, then

�
� sin �L �

�
�

��
�

sinh�L
�

c1 + � (cos �L � cosh�L ) c2 = 0 (63a)
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�
	 sin �L +

�
�

��
�

sinh�L
�

c1 +
�

	 cos �L +
��
�

cosh�L
�

c2 = 0 (63b)

For non-trivial solutions, the determinant of the coef�cient matrix of above equations should

be zero, which leads to

�
�

tan �L �
�
�

�
�

tanh �L = 0 (64)

After determining� from Eqs. (48) and (64), the natural frequencies are obtained by using Eq.

(47).

5. Numerical examples

In this section, the numerical results for transverse de�ections and fundamental natural

frequencies of nanobeams are presented and then compared with those calculated form nonlocal

EBT and TBT formulations reported by Reddy and Pang [4] to validate the accuracy. Four types

of boundary conditions are considered, such as(S-S), (C-C), (C-F) and(C-S). A wide range

of nonlocal parameters and thickness ratios are also taken into investigation to illustrate their

effects. The length of nanobeamL is assumed to be 10 nm, while the nonlocal parameters

� = ( e0a)2 have the values of 0, 1, 2, 3 and 4. It should be noted that� = 0 refers to local

beams and value of shear correction factor used for TBT is 5/6. For the shake of convenience,

the following normalized quantities are employed

�w = 100
EIw
q0L4

; �! = !L 2

r
�A
EI

(65)

Tables 1 and 2 present the results for normalized maximum de�ections and fundamental natural

frequencies of nanobeams with various boundary conditions. In general, the results obtained

from the EBT are close to those of TBT and present theory for thin beams. However, when

thick beams are considered, which implies the shear deformation effect becomes signi�cant,

the present results are in close agreement with those of TBT. Since EBT neglects the shear

deformation effect, there are discrepancies between present results and those from the EBT.

It should be noted that the present theory is analogous to the ETB as it only requires only

one variable; however, its predictions are comparable to those of the TBT, which involves two

variables and requires a shear correction factor. The effects of shear deformation and nonlocal

parameters on transverse de�ections and fundamental frequencies of nanobeams is depicted in

Figs. 1 and 2. Here�w=�we and�!= �! e denote the ratios of maximum de�ections and fundamental

frequencies obtained by the present theory to those predicted by the local EBT, respectively.
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As expected, when the shear deformation effect increases, the ratios of de�ections increase and

ratios of fundamental frequencies decrease with all considered boundary conditions. The most

signi�cant effect is seen for C-C beams and the least one is for C-F beams.

In this part, the the effect of nonlocal parameters on bending and vibration behaviour of

nanobeams is investigated. For the bending behaviour, this effect increases the de�ection of

S-S beams and C-S beams, reduces the de�ection of C-F beams but has no change on C-C

beams(see Fig. 1). It is also seen that the size effects are most pronounced for S-S beams,

as the differences between the nonlocal(� = 4 nm) and local(� = 0) results are 38.39% and

34.91% for thin beams(h/ L = 0:01) and thick beams(h/ L = 0:2), respectively. The corre-

sponding �gures for other beams are 26.28% and 21.26% (for C-S beams withh/ L = 0:01and

h/ L = 0:2, respectively), 16% and 15.6% (for C-F beams withh/ L = 0:01 andh/ L = 0:2,

respectively). For the vibration behaviour, the effect of nonlocal parameters on fundamental

frequencies is different. As this effect increases, considerable decreases in the values of fun-

damental natural frequencies of S-S, C-C and C-S beams are observed, while the results for

C-F beams slightly increase as depicted in Fig. 2. Speci�cally, this effect is most signi�cant

for C-C beams and lessened for C-S beams and S-S beams, in which the discrepancies be-

tween the nonlocal(� = 4 nm) and local(� = 0) results are 18.24% (h/ L = 0:01)and 16.14%

(h/ L = 0:2) for C-C beams; 17.33% (h/ L = 0:01) and 16.3% (h/ L = 0:2) for C-S beams;

15.33% (h/ L = 0:01) and 15.33% (h/ L = 0:2) for S-S beams. However, only small amounts

of discrepancies of 1.8% (h/ L = 0:01) and 1.5% (h/ L = 0:2) are seen for C-F beams.

6. Conclusions

In this study, a simple shear deformation beam theory involving one variable is proposed

for static bending and free vibration analyses of nanobeams. Nonlocal theory is utilized to

capture size effects. The equilibrium equations of elasticity theory are employed to developed

the governing equation. Analytical solutions for transverse de�ections and natural frequencies

with respect to four types boundary conditions are presented. Numerical results are also given

and compared well with those predicted by the nonlocal EBT and TBT. It is shown that the

present nonlocal theory has ability to account for the size effect and shear deformation without

requirement of shear correction factor, although it has close similarities with the nonlocal EBT

in terms of governing equation and boundary conditions. Furthermore, the numerical results

point out that the inclusion of nonlocal parameters has tendencies to increase the transverse
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de�ection and decrease the fundamental natural frequencies in simply supported beams and

propped cantilever beams, whereas the inverse effects are observed in cantilever beams. For

clamped beams, although there is a considerable effect on their fundamental vibration, their

bending behaviour is totally insensitive to the nonlocal parameters.
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Figure 1: Effects of shear deformation and nonlocal parameters on the de�ection of nanobeams.
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