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Abstract

The rapid development of multimedia devices such as computers, network tech-

nologies, and cell phones have made it easier for users to create, broadcast, convey,

share, store, and distribute multimedia data including images, videos and audio �les

on a daily basis. However, the availability of image processing software in the public

domain has facilitated illegal copying and distribution of digital images with un-

noticeable quality changes. Thus, security and identi�cation of media content has

become an important and demanding area for research. Perceptual hashing is one

of the recent technologies used for multimedia content security. A perceptual image

hash function is a hash function that is robust against content-preserving operations

(CPOs), such as noise, JPEG lossy compression and rotation.

This aim of this research is to study and investigate existing techniques and then con-

tribute to the development of new perceptual image hashing techniques in the trans-

form domain for image identi�cation and copy detection applications. The design

requirements for any perceptual image hashing system are robustness, discriminative

capability (uniqueness), and unpredictability (security). The feature extraction stage

plays a key role in ensuring the system output is robust and discriminative. This

thesis mainly focuses on the robust feature extraction stage and the analysis of the

proposed system’s security. The following contributions have been made:

A new perceptual hashing technique using pseudo-random sub-images in the discrete

wavelet transform (DWT) domain for extracting features has been developed. The

idea employs a recent dimension reduction technique, referred to as non-negative

matrix factorization (NMF) in the literature, for enhancing the robustness and se-

curity of the hash. This approach is proposed to select the most stable coe�cients

under various content-preserving operations, compact. The robust image hashes are

generated by applies DWT and NMF into image. The proposed sub-images-DWT

technique has been shown to yield good performance under image processing opera-

tions, but it still su�ers from geometric attacks.

A new rotation-invariant FMT-based hashing technique incorporating the Fourier-
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Mellin transform and using overlapping blocks to improve the robustness against

rotation attacks has also been proposed. The robust FMT-based image hashing is

proposed to improve its performances under rotation, translation attacks and achieve

better overall robustness. The invariance property to rotation, scaling and transla-

tion of FMT makes it more suitable for image hashing. Based on our experimental

results, it has been shown that the proposed FMT-based image hashing technique is

robust to a large class of image processing operations and geometric attacks.

A new robust and secure DCT overlapping block-based hashing technique incorpo-

rating the discrete cosine transforms (DCT) to combat image processing attacks has

been investigated. An improved DCT sign-based hashing technique robust against

image processing attacks and well as small geometric manipulations developed. From

the experimental results, it was observed that the low frequency coe�cients for DCT

sign based-image hashing were robust to a large of content-preserving operations

(CPOs). The main idea was to exploit the energy compaction property of the DCT

and its ability to carry information of edges and texture in DCT sign values. From

the experimental results, it was observed that the low frequency coe�cients for DCT

sign-based image hashing were robust to a large class of content-preserving opera-

tions (CPOs). The main idea was to exploit the energy compaction property of the

DCT and its ability to carry information of edges and texture in DCT sign values.

Finally, the security of the proposed image hashing systems are discussed and anal-

ysed in the light of the corresponding design requirement. The DCT sign-based

image hashing scheme has hash also been shown to be the most secure technique

compared to other techniques proposed in this research as it o�ers the highest rate

of bit independence in a hash.
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Chapter 1

Introduction

1.1 Background and motivation

Due to the advancement of digital devices and modern networking techniques, users can

nowadays easily create, broadcast, distribute, and store digital media including images and

videos daily over the social media network service such as Facebook, YouTube, and 4shared

etc. Because of the easy-to-copy nature of digital media, digital data can be illegally

distributed or forged this threatening data security and integrity. Therefore, measures for

security should be considered as follows:

� Content authentication : This is because digital multimedia can easily be manip-

ulated or the content can be tampered with. For example, objects can be removed

or added in an image easily by using image processing tools. Therefore, the aim

of content authentication is to verify the integrity of digital image data and iden-

tify malicious attacks has become one of the most important issues in digital media

security.

� Copyright protection : Users upload their images/video into public websites, ev-

eryone could download without any authorisation. The goal of copyright protection

is to identify perceptually identical even if they undergo di�erent types of distor-

tion induced by the imperfect transmission channel (see Figure 1.2) or protection
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of intellectual property right from illegal/unauthorised usage of these digital media

data.

Thus, e�ectively protection of the copyright of digital media data has become a real issue

which needs to be resolved. There are two approaches for the intellectual property pro-

tection of digital media; watermarking (Cox et al., 1996; Yeung and Mintzer, 1997; Wu

and Liu, 1998; Lu and Liao, 2001; Xie and Arce, 2001; Lu et al., 2003) and digital signa-

ture (Schneider and Chang, 1996; Lin and Chang, 1998; Venkatesan et al., 2000; Xie and

Arce, 2001; Hampapur and Bolle, 2001; Lin and Chang, 2001; Mih�cak and Venkatesan,

2002; Monga and Evans, 2004; Mucedero et al., 2004; Swaminathan et al., 2006; Sunil and

Yoo, 2008; Kheli� and Jiang, 2010; Zauner, 2012).

Watermarking has been mainly developed in order to authenticate the integrity of media

data and protect digital copyrights. The fundamental idea of watermarking is to embed

invisible secondary data called watermarks depending on the application, onto the dig-

ital images or videos prior to distribution. Therefore, all copies of the marked content

contain the watermark, which can be extracted as identi�cation information to prove own-

ership. Watermarking has been widely used for the following purposes: broadcast mon-

itoring, copyright protection, copy control, authentication and proof of ownership (Cox

et al., 2000). One of the limitations of watermarking is that the embedding process would

inevitably cause slight changes upon the media content, especially when the embedded

watermark signals are required to be robust against signal processing attacks. Therefore,

a balance between the strength of embedded watermark signals and the content quality of

the host media data needs to be considered.

The digital signature is a set of features extracted from the media itself, which can rep-

resent the content of the original data. This means the digital signature does not require

additional information, just a media itself. Generally, media data such as images and

videos contain enough unique information to be used as a content signature or as content

identi�cation (content ID) for detecting copies, especially those that have been illegally

distributed. For example, the owner of the �lm Fast and furious created a set of video

signatures (feature vectors), which meant that they could be used to rapidly �nd the movie
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clips. If the owner suspects that it is being illegally distributed on the internet, they can

use a copy detection system. The copy detector investigating video copies in a database,

in which videos are collected from the web pages.

Classic cryptographic hash functions, e.g., MD5 and SHA-1, or message authentication

codes, convert an input message (document, image, video, text, etc.) into a �xed-length

bit string. Cryptographic hash functions are typically used for as digital signature to au-

thenticate the message being sent, therefore, the recipient can verify its source. In general,

authentication means deciding whether an object is authentic or not. That is, if every sin-

gle bit in the transmitted data is matched in the original object. Thus, cryptographic hash

functions are suitable for such tasks. However, they are extremely sensitive to single-bit

changes in the input data and are not suitable for digital multimedia, especially digital

images; where perception of the data is needed. This is because in real applications digital

images often undergo signal processing operations, such as JPEG lossy compression, noise,

rotation and image enhancement. These signal processing operations would de�nitely

change the binary representation of the input image and hence perceptual hashing would

be the solution. With this in mind, the perceptual image hashing concept is presented and

as an e�cient tool to address issues of image copyright protection.

1.2 Perceptual image hashing

1.2.1 Concept and properties

As an alternative way to ensure e�cient image copyright protection, perceptual image

hashing has been proposed to generate a robust, unique, and secure feature for each image

and thus, calculate the hash values of these features, without any watermark embedded in

host images. Authentication/identi�cation of an image is performed through comparison

of hash values of original data and the query data using speci�c functions. The image hash

depends on the image content itself.

Let I denote a particular image and Î be a modi�ed version which is \perceptually
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similar" to I and J denotes an image that is \perceptually di�erent" from I. Let

�1,�2 two positive values that satisfy 0 < �1; �2 < 1. An hash function denoted by H (.),

produces a hash signature of �xed length depending on a secret key, K. The properties of

a perceptual image hashing function are identi�ed as follows:

1. Robustness:

(H(I;K) � H(Î;K) � 1� �1; 0 � �1 � 1 (1.1)

The robustness property requires for any pair of perceptually similar/identical images

should have similar hashes. While for digital image data, perceptually insigni�cant distor-

tions introduced to original images due to compression or noise transmission channels or

via Internat. Therefore, it is main required to guarantee that perceptually similar images

hash similar image hashes, and image hashes should be robust enough to such content-

processing operations (CPOs) attacks for identi�cation purpose. An example is illustrated

in Figures 1.2(a) to (g), which includes the original image and its distorted copies un-

der di�erent distortions such as JPEG lossy compression, additive white Gaussian noise

(AWGN), median �lter, histogram equalisation, rotation and translation. Perceptually,

these images are identical in human visual system (HVS). The perceptual robustness of

image hashing guarantees that these images have very similar hashes, if the system is

robust enough against these attacks.

2. Discriminability:

(H(I;K) 6= H(J;K) � 1� �2; 0 � �2 � 1 (1.2)

The discriminability of the image hashing system guarantees that perceptually distinct

images should have di�erent hashes.

3. Unpredictability:

(H(I,K)); fh(1) � fh(0) � 0:5 (1.3)
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Where fh (x ) is the probability mass function for h. With this property the hash values

should be approximately equally distributed. Security is an important concern for image

hashing. Pseudo-randomisation techniques are incorporated into the image hash generation

process to enhance the security of image hashes by using secret keys.

4. Compactness:

Size(H(I,K))� Size(I); (1.4)

The size of the image hashes should be much smaller than the original image I. The

compact image hashes should facilitate the search process in a database of hashes and

should require less storage space (Yang and Rhee, 2010).

1.2.2 Perceptual image hashing framework

Figure 1.1: The generic framework of image hashing: Adapted from Yang and Rhee (2010)

A perceptual image hashing system, as illustrated in Figure 1.1, generally consists of three

main stages:pre-processing, feature extraction and post-processing. The robustness

of image hashing arises from robust feature extraction and the post-processing mainly

contributes to the �nal hash. The security of image hash can be cooperated into one or two
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of the three steps by using a secret key. After reviewing digital image hashing algorithm

design, the design framework of digital image hashing depends on di�erent application

scenarios. For example, if the digital image hashing algorithm is designed for content

identi�cation or copy detection purposes, it mainly concentrates on the robustness against

content-preserving operations (CPOs) that do not destroy the perceptual quality of the

image. However, for image authentication purpose, it mainly focuses on the malicious

attacks (content-changing operations (CCOs)) in the image content such as removal and

object insertion, image hashes should be sensitive to these perceptually signi�cant attacks.
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(a) Original \Lena" image

(b) JPEG lossy compres-
sion

(c) AWGN

(d) Median �lter (e) Histogram Equalisa-
tion

(f) Rotation (g) Translation

Figure 1.2: Examples of distorted \Lena" image copies under di�erent content-preserving
operations (CPOs)
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Pre-processing

The pre-processing step aims to decrease the sensitivity of feature extraction against minor

distortions on the image such as noise and lossy compression, before the feature extraction

step. The common pre-processing operations applied on the images are listed as follows:

� Filtering (Swaminathan et al., 2006; Roy and Sun, 2007; Xiang et al., 2007): This

is an e�cient method to improve the robustness of the extracted features against

noise. The popular �lters, such as Gaussian �lter, could be applied on image hashing

to assist with noise reduction and also eliminate some details of the image contents

and generate blurred images. Thus, the image hashing scheme is robust enough for

blurring distortions.

� Illumination normalisation (Fridrich and Goljan, 2000; Swaminathan et al.,

2006): This is the way to improve the extracted feature against a change in brightness

or gamma correction attacks. Illumination normalisation processes such as histogram

equalisation can e�ectively render the extracted features invariant to illumination

changes.

� Resizing (Mih�cak and Venkatesan, 2002; Monga and Evans, 2006; Swaminathan

et al., 2006; Lv and Wang, 2009): This is the way to improve the e�ciency of hash

generation. The features extracted from the image with a standardised size are more

robust against the aspect ratio change.

� Colour space dimension reduction (Fridrich, 2000; Venkatesan et al., 2000;

Mih�cak and Venkatesan, 2002; Kim, 2003; Lefebvre et al., 2003; Lu and Liao, 2003;

Monga and Evans, 2006; Swaminathan et al., 2006; Lin et al., 2007; Brasnett and

Bober, 2008; Lv and Wang, 2009): This is a common operation applied in most digital

image hashing algorithms to reduce the computational cost for feature extraction (e.g.

3D to 2D).
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Feature extraction

Robust feature extraction is the primary goal of perceptual image hashing algorithms.

The extracted features are based on the characteristics of images which should be unique

and distinctive enough for content identi�cation. Hash values are expected to survive or

robust on insigni�cant content-preserving operations (CPOs) as long as two images appear

perceptually similar to the human visual system (HVS). Thus the hashes should be as

similar as possible. Likewise, two images that are perceptually di�erent should correspond

to dissimilar hashes. Hence, robust feature extraction is a key step in image hashing due to

the critical robustness requirement. Based on the literature review and my own study, the

feature extraction operations that are applied on the image to search for certain features

to resist some types of image distortions are classi�ed as follows:

� Techniques based on statistical information (Motwani and Raghavan, 1996;

Schneider and Chang, 1996; Venkatesan et al., 2000; Kailasanathan and Nani, 2001;

Kim, 2003; Wu et al., 2007; Xiang et al., 2007; Zou et al., 2009): This group of

techniques extracts hash features by calculating the images statistics of pixels values

of the image in the spatial domain, such as image intensity, mean, variance and other

higher order moments. The statistic features are more robust than the raw pixel

values against noise and compression distortions, although with less distinctiveness.

� Techniques based on low-level features (Fridrich, 2000; Lu and Hsu, 2005;

Monga and Evans, 2006; Roy and Sun, 2007; Zou et al., 2009) : This group of

processes extracts local feature patterns usually by including edges, interest points,

corners, blobs, etc. The advantage of applying local features is mainly for robust-

ness against geometric attacks, however, it is sensitive to noise addition, blurring,

compression attacks.

� Techniques based on dimensionality reduction (Fodor, 2002; Kozat et al.,

2004; Monga and Mih�cak, 2007; Tang et al., 2008; Lv and Wang, 2008; Hassan

et al., 2012; Tang et al., 2013): This group of approaches extracts hash features by

a process of reducing a high dimensional parapets into a relatively low dimensional
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data as well as maintaining the properties of the original data. The advantage of

applying dimensionality reduction techniques are mainly for robustness against noise

addition, blurring and compression attacks. However, their performance under large

geometric attacks is still limited.

� Techniques based on invariant properties in transformed domains (Fridrich

and Goljan, 2000; Venkatesan et al., 2000; Lin and Chang, 2001; Lefbvre et al., 2002;

Mih�cak and Venkatesan, 2002; Kailasanathan et al., 2003; Kim, 2003; Lu and Liao,

2003; Kozat et al., 2004; Seo et al., 2004; Lu and Hsu, 2005; Monga et al., 2005;

Harmanci et al., 2006; Swaminathan et al., 2006; Guo and Hatzinakos, 2007; Roy

and Sun, 2007; Gerold and Andreas, 2008; Lv and Wang, 2009): This group of tech-

niques extracts the hash features by transforming the image from the spatial domain

into the transform domain. The coe�cients in the transform domain can be critical

features and robust enough against a large class of image processing operations and

attacks. The transforms used to extract features include discrete wavelet transform

(DWT), discrete cosine transform (DCT), fourier-Mellin transform (FMT), Radon

transform (RT), etc.

Post-processing

This step is concerned with compactness in image hashing, which is another critical prop-

erty of image hashing algorithms. Robust features need to be compressed into a short

real-valued or binary sequence of �xed-length, which can be considered to be a \dimension

reduction process". Some typical techniques are summarised as follows:

� Quantisation (Fridrich, 2000; Venkatesan et al., 2000; Kailasanathan and Nani,

2001; Lin and Chang, 2001; Mih�cak and Venkatesan, 2002; Kailasanathan et al.,

2003; Kim, 2003; Lu and Liao, 2003; Seo et al., 2004; Lu and Hsu, 2005; Monga,

2005; Swaminathan et al., 2006; Guo and Hatzinakos, 2007; Lin et al., 2007; Roy and

Sun, 2007; Xiang et al., 2007; Brasnett and Bober, 2008): Here, continuous feature

space is converted to �nite discrete feature space. The popular approaches include
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interval quantisation, binary quantisation using ordinal measures or threshold for

image hashing generation.

� Compression and coding (Venkatesan et al., 2000; Norcen and Uhl, 2005; Swami-

nathan et al., 2006; Lin et al., 2007): These techniques are used in communications

and can be applied to compress the robust features into short image hashes. Popular

techniques include distributed source coding (e.g., Wyner-Ziv, Slepian-Wlof), and

Error-Correcting Coding (ECC) etc.

� Random projection (Harmanci et al., 2006; Swaminathan et al., 2006; Lin et al.,

2007; Monga and Mih�cak, 2007; Roy and Sun, 2007; Lv and Wang, 2008, 2009):

The random projection approach can o�er a performances comparable to that of the

conventional dimension reduction methods, for instance the Principal Component

Analysis (PCA). Random projection is a pseudo-randomisation process that can

enhance the security of the designed image hashing scheme.

� Clustering (Kailasanathan and Nani, 2001; Kim, 2003; Monga and Evans, 2006;

Roy and Sun, 2007): This method divides the feature space and map similar features

into the same centroid of clusters.

Security incorporation

A further important property of image hashing is \security". The basic idea is to make

image hashes unpredictable by incorporating a secret key into the hash generation to

make it as a pseudo-randomisation process. A change in the secret key should signi�cantly

change the hashes to ensure that users cannot guess or generate the right hash of an image

without the correct secret key. Therefore, with the secret key, the security of image hashes

can be controlled by approved users and prevent unauthorised access, which facilitates the

application of copyright protection. The way to security incorporation can be viewed as

follows:
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� Randomised tiling (Venkatesan et al., 2000; Mih�cak and Venkatesan, 2002; Kozat

et al., 2004; Meixner and Uhl, 2005, 2006; Monga and Evans, 2006; Monga and

Mih�cak, 2007; Tang et al., 2008; Lv and Wang, 2009; Jie, 2013): Images are ran-

domly partitioned into overlapping sub-images based on the selected secret key.

These sub-images can be circles, or rectangles, squares with a selected radii or size.

Subsequently, the extracted features from these randomised sub-images enhance the

security of the �nal image hash. Typically, randomised tiling is applied in the pre-

processing step. Nevertheless, it should be noted that random partitions are sensitive

to geometric attacks.

� Randomised projection (Schneider and Chang, 1996; Dittmann et al., 1999;

Venkatesan et al., 2000; Mih�cak and Venkatesan, 2002; Harmanci et al., 2006; Swami-

nathan et al., 2006; Kitanovski et al., 2007; Lin et al., 2007; Monga and Mih�cak, 2007;

Roy et al., 2007; Xiang et al., 2007; Lv and Wang, 2009): This method is applied

in both the post-processing and compression steps to project robust features into a

lower dimension based on the projection matrix, whose entries are random variables

determined by the selected secret key.

� Randomised transform (Fridrich and Goljan, 2000; Meixner and Uhl, 2006; Lin

et al., 2007; Tang et al., 2008; Lv and Wang, 2009; Fawad et al., 2010): After ex-

tracting the robust features, another randomised domain determined by the selected

secret key is further used to make the features unpredictable. It is inherently a

pseudo-encryption process applied in the feature extraction step.

� Traditional cryptography (Lin and Chang, 2001; Xie et al., 2001; Lu and Liao,

2003): Cryptography could be employed for encrypting features after the compression

step, although they are sensitive to a single change of encrypted data.

1.2.3 Comparison and decision making

The distance metrics and classi�ers reviewed in this subsection are mainly applied to

evaluate the robustness and discriminative capability of image hashing schemes. Ideally, a
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robust and secure image hash is generated and saved in the database, as an index. When a

query hash is received, it will be compared by calculating the distance between the hashes,

and as a result, the outcome is a \similarity score". The distance metrics that are

selected to measure the similarity between hashes to make decisions, are very important

in image hashing.

Distance metrics

The choice of distance metrics depends on the type of hashes. Given two image hashes

H1 = h1(1); h1(2); : : : ; h1(n) and H2 = h2(1); h2(2); : : : ; h2(n) of two images I1 and I2 with

hash length n, the following distance metrics are usually employed:

Hamming distance (HD):

The Hamming distance is utilised to measure the similarity between two binary hash vec-

tors by comparing with the bit-by-bit. The Hamming distance is given as:

HD(H1; H2) =
nX

i=1

jh1(i)� h2(i)j (1.5)

Normalised Hamming distance (NHD):

The Hamming distance can be normalised with respect to the length n of the binary

strings, then normalised in the [0,1] range. The two images are perceptually similar and

the distance is close to 0, whereas the distance is expected to be close to 0.5 for two distinct

images. The normalised Hamming distance is de�ned as:

NHD(H1; H2) =
1
n

nX

i=1

jh1(i)� h2(i)j (1.6)

Euclidean distance (ED):

The Euclidean distance is a technique that is suitable for non-binary vectors (real-values

or integers). It is de�ned as the square root of the sum of the squares of the di�erences

13



between the corresponding hash values.

ED(H1; H2) =

vuut
nX

i=1

(h1(i)� h2(i))2 (1.7)

Bit Error Rate (BER):

The bit errors rate � as the number i of bit errors of the hash normalised by the length n

of the hash:

� :=
i
n

(1.8)

where i 2 f0; 1; : : : ; ng and 0 � � � 1:

The number of the bit errors i equals the hamming distance of the hash values. Therefore,

a perceptually similar image should yield a BER close to 0.

1.2.4 Classi�ers

Based on the similarity between two hashes, computed by the selected speci�c distance

metrics, a similarity score is output. A classi�er is employed to make a decision in connec-

tion with the content identi�cation. The classi�er is de�ned as:

Distance((H1); (H2)) � �; (1.9)

when I1 is similar to I2

Distance((H1); (H2)) > �; (1.10)

when I1 is di�erent from I2, where � is the selected threshold.

1.2.5 Receiver Operation Characteristics (ROC) curves

ROC graphs are two-dimensional graphs de�ned by the True Positive Rate (TPR) which

is plotted on the y-axis and False Positive Rate (FPR), which is plotted on the x-axis. The

ROC graphs depicts relative trade-o� between the true positive (bene�ts) rate and false
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positive (cost) rate of the system (Egan, 1975; Swets et al., 2000; Fawcett, 2006). Figure 1.3

shows an ROC graph with �ve classi�cation labeled A through E. The diagonal divides

the ROC space, with the points above the diagonal represent high-quality classi�cation

results, and the points below the line signifying poor classi�cation results. Therefore,

the best possible prediction method would produce a point in the upper left corner or

coordinates (0,1) of the ROC space (Zweig and Campbell, 1993).

Figure 1.3: Example ROC curve analysis

1.3 Aim and Objectives

This aim of this research is to investigate the performance of existing techniques and

contribute to the development of new techniques of perceptual image hashing to be used

for image identi�cation. The main objectives are as follows:

1. To investigate the performance of Discrete Cosine Transform (DCT), Discrete Wavelet

transform (DWT), and Fourier-Mellin Transform (FMT) for improving feature ex-

traction.

2. To develop new techniques of perceptual image hashing for content identi�cation
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based on the methods and framework of objectives 1.

3. To evaluate the performance of the perceptual image hashing algorithms including a

comparative study alongside existing and related techniques: this will be carried out

by considering content-preserving operations (CPOs) through intensive experiments.

1.4 Thesis contributions

Based on the four basic requirement properties of image hashing: robustness, discrim-

inability, compactness, and security. It is obvious that the key point in designing desirable

digital image hashing algorithms are feature extraction, feature compression and the se-

curity incorporation. In this thesis, I will focus mainly on the robust feature extraction

stage and security issues. The contributions of this thesis are as follows:

1. To complete a literature review on image hashing including an analysis and com-

parison of various robust feature extraction methods, and research into the future

direction of image hashing.

2. To introduce a robust and secure perceptual image hashing technique based on

pseudo-random sub-images in the DWT domain for extracting features. The idea

also makes use of a recently proposed dimension reduction technique, referred to

in the literature, as \Non-negative Matrix Factorisation"(NMF) for enhancing the

robustness of the hash to achieve superior identi�cation performances under various

distortions and attacks. Experimental results show that the proposed image hash-

ing scheme can provide an improved performance under image signal operations,

although it can still su�er from geometric attacks.

3. Propose using the popular rotation, translation and scaling invariant feature trans-

form by using the FMT domain and overlapping blocks to improve the security and

robustness against geometric attacks. This image hashing concept develops the per-

formance of the image hashing technique against rotation and translation attacks.

16



Experimental results show that the proposed image hashing scheme is robust in wide

range of distortions.

4. To propose a robust and secure DCT-based image hashing method and DCT sign-

based image hashing method. The DCT is well-known for its compression capability;

therefore, it is widely used in image compression standards. The DCT coe�cients

were utilised as features, to identify images under various distortion attacks. Experi-

mental results demonstrated that the DCT sign-based image hashing scheme o�ers an

excellent robustness against signal processing operations and geometric attacks, es-

pecially translation and outperforms the conventional DCT overlapping block-based

image hashing scheme.

1.5 Review of related work

As mentioned earlier most of the existing perceptual image hashing algorithms are gen-

erated from signi�cant features that represent the image semantic content and use them

during identi�cation or authentication. This can be classi�ed into four types as follows:

1.5.1 Techniques based on statistic information

The statistical information, such as image intensity, mean and variance, is invariant un-

der small perturbations to the image. The early research of Schneider and Chang (1996)

used an intensity histogram of image blocks to create image hash values. The histograms

are encrypted by using pubic key to obtain the �nal image hash, this then needs to be

stored and decrypted again for veri�cation. In the veri�cation step, the Euclidean dis-

tance between intensity histograms are used as a measure to verify the image. The most

signi�cant drawback of the scheme is that it is easy to attack the image without altering

its histogram. Venkatesan et al. (2000) proposed an image hashing method that was used

for indexing and database searching. This scheme is based on an image statistic computed

from randomised rectangles in the variant sub-bands, in a wavelet decomposition of the
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image. In the algorithm, a wavelet decomposition of the image is computed �rst and each

of the sub-bands is randomly divided into rectangles by using a secret key. Each rectangle’s

statistics are calculated and quantization is used by applying a randomised rounding (Mot-

wani and Raghavan, 1996) ensures that the �nal hash values, as binary strings are ran-

dom. The quantised statistics are the decoding stage of the Reed-Muller Error correcting

code (Blahut, 1983) to generate the �nal hash value. This technique has been shown to

be robust against image processing operations and geometric attacks. Kailasanathan and

Nani (2001) proposed an image hashing scheme based on K-means segmentation to extract

statistics such as variance, mean and other higher order moments from image blocks to

use in image hashing.

Furthermore, Xiang et al. (2007, 2012) proposed a robust image hash algorithm by using

the histogram shape invariance that is robust against geometric attacks and image process-

ing operations. This scheme does achieve a satisfactory robustness performance for most

signal processing operations and geometric attacks. Tang et al. (2012) proposed a robust

image hashing algorithm using an advantaged histogram of colour vector angles to generate

hashes. This scheme is robust against rotation with an arbitrary degree. The advantage

of the statistic information based method is its robustness against perturbations to the

image. The schemes in Schneider and Chang (1996); Venkatesan et al. (2000); Xiang et al.

(2007) achieve robust capability under geometric operations. Nevertheless, the security of

this kind of method is very weak, but random partitioning may solve the security problem

under the assumption that the sizes and the positions of image blocks are secure enough

against attackers.

1.5.2 Techniques based on dimensionality reduction

Dimension reduction is the process of reducing high dimensional datasets into relative low

dimensional datasets, as well as maintaining the properties of the original data (Fodor,

2002). Kozat et al. (2004) suggested viewing images and attacks on a sequence of linear

operators and proposed novel hashing algorithms based on Singular Value Decomposition

(SVD). This scheme, called SVD-SVD hashing, �rst applies SVD on the image to extract
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intermediate features. Following this, a secondary image is constructed from the interme-

diate features and decomposed by SVD again to obtain the �nal hash. The SVD-based

image hashing algorithm is robust against severe geometric attacks on images; however its

discriminative capability between di�erent images needs to be improved.

Monga and Mih�cak (2007) proposed the use of non-negative matrix factorisation (NMF)

to derive image hashing because of its non-negativity constraints. This proposed called

NMF-NMF hashing, is applied NMF to sub-images. The combination coe�cients in ma-

trix factorisation are used to construct a secondary image, and subsequently its low-rank

matrix approximation is obtained by using NMF again, in order to generate the secure

hash sequence. The two-stage cascade application of NMF on images obtains a higher

robustness under content-preserving operations (CPOs) while reducing the misclassi�ca-

tion rate for the images under content-changing operations (CCOs). Lv and Wang (2008)

presented image hashing based on a Fast Johnson-Lindenstrauss Transform (FJLT). This

approach has a comparable and robust capability as a NMF-based scheme, although it

has a lower computational cost. Tang et al. (2008) observed the invariant relation that

exists in the NMF coe�cient matrix and used this property to construct robust hashes.

This scheme is robust against common signal processing operations such as JPEG lossy

compression, additive noise and watermarking embedding. However it is, fragile to image

rotation. Hernandez et al. (2011) proposed an image hashing scheme by using normalisa-

tion and SVD decomposition hash functions to generate a hash value. This scheme applied

an image normalisation technique on randomly selected sub-images, as a pre-processing

step aimed at increasing robustness against rotation, scaling and JPEG compression. The

�rst SVD decomposition function is applied to each sub-image. Subsequently, rearranging

the matrices and again applying an SVD decomposition function generates the �nal binary

hash value. Their results were a signi�cant improvement in terms of the Hamming dis-

tance against some image processing operations and geometric attacks such as JPEG lossy

compression, rotation and scaling. Hassan et al. (2012) presented secure and robust image

(visual) hashing based on the DWT and NMF. This scheme �rst applied a low pass �lter

and histogram equalisation, as a pre-processing step, then applied DWT decomposition
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on the image. NMF is applied on low-frequency coe�cients to defer the coe�cients and

then to generate the �nal binary hash value. From their results, they proposed a method

that can achieve robustness against perceptually insigni�cant manipulations and has an

enhanced performance in terms of local tampering detection. Tang et al. (2013) proposed

robust perceptual image hashing based on ring partition and NMF. The key is a novel con-

struction of the rotation-invariant secondary image which helps to make the image hash

resistant to rotation and has a desirable discriminative capability. This scheme obtains

a satisfactory robustness against the geometric operation, and discriminative capability

is ensured. The image hashing generated by dimension reduction methods depends on

the creation of an image on an adaptive basis, which is an unsupervised learning process.

Therefore, a trade-o� between the e�ciency and classi�cation performance would need

to be considered when designing an image hashing algorithm via a dimension reduction

technique.

1.5.3 Techniques based on low-level features

The low level features are edges or interest points information in the image. Robust low

level feature extraction is the main task for this kind of approach. The properties of the

image hashing algorithm based on low level features mainly depend on the performance

of low level feature detections. In their earlier works, Monga and Evans (2004, 2006)

exploited the end-stopped wavelet cells to detect visually signi�cant feature points. Based

on this evaluation and comparison results of other feature points detectors, the end-stopped

wavelet gained robustness with the content-preserving operations (CPOs). In this scheme

the feature points are extracted by using end-stopped wavelet transform. To make a short

hash, an iterative algorithm proposed in Mih�cak and Venkatesan (2002) is employed to

obtain a hash value. The image hashing based on feature-points detection may be fail in

the case of a smooth texture on image. Lu et al. (2004) and Lu and Hsu (2005) proposed

robust hashing for copy detection and tracing images. The Harris detector is applied on

the image to detect robust points. Then, Delaunay tessellation is performed using the

obtained points to generate the set of meshes. There is no secret key in the scheme, thus,
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the security cannot be evaluated and the mesh normalisation during hash generation is

complex. In addition, it has a signi�cant time cost. Roy and Sun (2007) presented an

image hashing scheme for detecting and localising image tampering. The localisation of

the tampering is an optional functionality of image hashing. This scheme consists of two

parts: the �rst part is used for authentication only, and is this part based on the Scale-

Invariant Feature Transform (SIFT) proposed in Lowe (2004), which is robust to several

geometric transforms. The second part is used for tampering localisation and is based on

local histograms of directions of the edges. The performance of both the robustness and

collision resistance are dependent on parameters which are analysed in Roy et al. (2008).

The properties of low-level features are mainly dependent on the performance of a low level

feature detector. It must be robust enough against content-preserving operations (CPOs)

and have su�cient discriminative capability for content-changing operations (CCOs), and

moreover, an image hashing algorithm must be constructed under a suitable key projection.

Additionally, the parameters used to construct the hash, such as the number of feature

points, the edges and the number of meshes should be selected carefully in order to avoid

unnecessary costs.

1.5.4 Techniques based on invariant properties in transformed

domains

The invariant in the transformed domain is the image from the spatial domain into other

domains such as DCT, DWT, or DFT. Di�erent algorithms utilize di�erent invariant prop-

erties in various domains to construct the robust image hashes. Early research proposed

by Fridrich and Goljan (2000) constructed the image hash by selecting DCT coe�cients.

This method is based on a large absolute value of low-frequency coe�cients on the zero-

mean random smooth patterns based on a secrete key. The hash extracted via this method

is fairly robust to slight content-preserving operations (CPOs). The weakness in this

method is that it is very sensitive to a small angle image rotation. Mih�cak and Venkate-

san (2001) proposed an image hashing algorithm based on the DWT coe�cients by using
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iterative approach to binarise the DC-subband (LL subband) of a 3-level Haar wavelet

decomposition of the image. During the iterations, the signi�cant features are preserved,

whereas insigni�cant features are eliminated. Lin and Chang (2001) presented a robust

image authentication system based on invariant relations between DCT coe�cients at the

same position in separate blocks. This image hashing method can prevent malicious manip-

ulations, but allows JPEG compression and is fragile to rotation. Lefbvre et al. (2002) were

the �rst to use Radon transform (RT) to construct robust hashes. The Radon transform,

which is largely used in magnetic resonance imaging, is also robust against image process-

ing basic attacks. Seo et al. (2004) presented a new method for image �ngerprinting using

auto correlation of each projection in the Radon transform domain to make image hashing

robust against a�ne transformations. Swaminathan et al. (2004) introduced FMT to image

hashing, the proposed image hash is resilient to geometric and �ltering operations, and is

secure against guessing and forgery attacks. Fawad and Siyal (2005) proposed a secure and

robust hashing scheme for image authentication by using the property of DWT and SHA-1.

These methods allow acceptable manipulations like JPEG compression and low pass �lter-

ing and are sensitive enough to detect malicious manipulations. The security is achieved by

using the permutation key in the feature extraction stage and by encrypting the �nal hash

value using the sender’s private key, an attacker can not easily calculate the image hash

using the DWT without the private key. Roover et al. (2005) introduced a robust video

hashing algorithm based Radial Hashing (RASH) algorithm. They did this by dividing an

image into a set of radial projections of image pixels, then extracting a Radial Variance

(RAV) vector from these radial projections and a compressed vector by DCT. The RASH

algorithm is resilient to geometric attacks, (like image rotation and re-scaling), but its

discriminative capability needs to be improved. Swaminathan et al. (2006) used the DFT

coe�cients to produce image hashing. This scheme is resilient to several content-preserving

operations (CPOs), such as compression, �ltering, and common geometric operations up to

10� of rotation and 20% of cropping. This scheme also has good discriminative capabilities

and can identify malicious manipulations such as a cut-and-paste type of editing. Hadmi

et al. (2010) analysed the robustness of wavelet-based perceptual signatures. This was
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achieved by generating signatures from the coe�cients of the subband LL after a DWT

transformation. The proposed method is e�cient, robust against common content preserv-

ing manipulations. Lei et al. (2011) performed the Radon transform (RT) on the image

and calculated the moment features, which are invariant to translation and scaling in the

projection space. The signi�cant DFT coe�cients of the moments are used to produce

the image hash bits. This RT-DFT scheme for image hashing produced superior results

than Seo et al. (2004) and Swaminathan et al. (2006) techniques in terms of perceptual

robustness and discriminative capability. Recently, Jie (2013) proposed a block-DCT and

Principal Component Analysis (PCA) based image hashing algorithm. The main idea of

this algorithm was to integrate a colour histogram and DCT coe�cients of image blocks,

then to compress robust features as inter-feature with PCA, and subsequently muse a

threshold to create a robust hash. The most widespread frequency transforms to dissimu-

late data in images are the DFT, DCT, and DWT. However, most of the transforms are

not new and the coe�cients here may be easily attacked (Fawad and Siyal, 2006). Thus,

improving the security may sacri�ce somewhat of the robustness to the content-preserving

operations (CPOs).

1.6 Thesis outline

The thesis outline is summarised as follows:

Chapter 1 provides the introduction of this thesis, which includes the overview, challenges

and motivations for this work. The review of related work is then presented. Next, the

principles of perceptual image hashing, which is used in this work, are introduced. In ad-

dition, the aims and objectives, thesis distribution and thesis outlines are also presented.

Chapter 2 presents an introduction to image representation in the transform domain. Then,

the several transforms used in this research work, such as DCT, FMT, and DWT, are il-

lustrated. The chapter end with a conclusion.

Chapter 3 presents the proposed framework for perceptual image hashing in the DWT

domain. This includes illustrating the approach, random partition, NMF and the identi�-
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cation and evaluation experiments. The experimental results are then illustrated. Subse-

quently, the conclusion is drawn.

Chapter 4 presents the proposed framework for perceptual image hashing in the FMT

domain, which includes a description of the technique with experimental assessments and

analysis. A conclusion is provided on the performance of the system.

Chapter 5 presents the proposed framework for perceptual image hashing in the DCT do-

main, which contains of two techniques: DCT overlapping block-based image hashing and

DCT sign-based image hashing. Experimental results are then illustrated and discussed.

Finally, chapter 6 draws to a conclusion to the entire thesis by making a summary of the

main contributions and presents recommendations for futures work.
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Chapter 2

Image representation in the

transform domain

An image transform can be thought of as a way to change the statistics of the source image.

The most attractive properties exhibited in the transform domain are energy compaction

and decorrelation. Energy compaction suggests that most of the signal information tends

to be concentrated in a few low frequency components of the transform. Figure 2.1 shows

the energy distribution of a standard image \Lena" in both spatial and DCT domains.

Decorrelating transforms remove linear dependencies from the data. Therefore, a set of

components are produced such that, when they are individually quantised and entropy

coded, the resulting symbol stream is reduced substantially, when compared to applying

the quantisation directly on the image data. In fact, in the spatial domain, a portion

of information carried in a given pixel may also exist within another adjacent pixel. As

mentioned earlier, this is referred to as spatial redundancy. Redundancy reduction aims

at removing duplication from the image data. In the following, the most widely used

decorrelating transform are reviewed.
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Figure 2.1: Histogram of the image \Lena" image, (a) Spatial domain (b) DCT domain
Only a portion ( 1

64) of the entire transform image is taken at the top-left side, where the
magnitude of the spectrum is normalised in [0,1] and displayed to show the behaviour in
the lower frequencies

2.1 Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is an important image processing tool which is used to de-

compose a signal into its sine and cosine components (Bracewell, 1999). It is generally a

complex valued function which is de�ned for an integrable function x as

X(f) =
Z +1

�1
x(t)e�i2�ftdt; f 2 <: (2.1)

When the independent variable t represents time, the transform variable f represents ordi-

nary frequency. In the Fourier domain signal, each point represents a particular frequency

contained in the time domain signal. The signal x (t) can be reconstructed from X (f ) by

the inverse transform

x(t) =
Z +1

�1
X(f)e�i2�ftdf; t 2 <: (2.2)

The interpretation of X (f ) is aided by expressing it in polar coordinate form as

X(f) = jX(f)jei�(f) (2.3)
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where jX(f)j and �(f) represent the amplitude and the phase of X (f ), respectively.

Let x (t), X (f ) denotes that x (t) and X (f ) are a Fourier transform pair. Some important

properties of the Fourier transform are

� Linearity

ax1(t) + bx2(t) , aX1(f ) + bX2(f )

� Convolution

x1(t) � x2(t) , X1(f )X2(f )

� Scaling

x(at) , 1
jaj X (fa )

� Time shift

x(t� t0) , e�i2�ft0 X (f )

� Modulation

x(t)e�i2�f0t , X (f - f0)

� Parseval’s theorem

R
< jx(t)j2 =

R
< jX(f)j2

The DFT is the sample Fourier transform. Therefore, it does not contain all frequencies

forming an image, but only a set of samples that are large enough to perfectly describe

the spatial domain image. The number of frequencies corresponds to the number of pixels
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in the spatial domain image, i.e. the image in the spatial and Fourier domain are of the

same size. For a square image size N�N, the two-dimensional DFT is given by

F (k; ‘) =
N�1X

i=0

N�1X

j=0

f(i; j)e�i2�( ki+‘j
N ) (2.4)

where f (i,j ) is the image in the spatial domain and the exponential term is the basis

function corresponding to each point F (k,‘) in the Fourier space. Eq. 2.4 can be interpreted

as: the value of each point F (k,‘) is obtained by multiplying the spatial image with the

corresponding base function and summing up the result. The basis functions are sine and

cosine waves with increasing frequencies, i.e. F (0,0 ) represents the DC-component of the

image which corresponds to the average brightness and F (N-1, N-1 ) represents the highest

frequency. In a similar manner, the Fourier image can be re-transformed to the spatial

domain. The inverse Fourier transform is given by

f(i; j) =
1
N2

N�1X

k=0

N�1X

‘=0

F (k; ‘)ei2�( ki+‘j
N ) (2.5)

2.2 Fourier-Mellin Transform (FMT)

The Fourier-Mellin transform is a useful mathematical tool for image recognition or image

onto image recognition and image database retrieval, because its resulting spectrum is

invariant in rotation, translation and scaling (Lin et al., 2001; Swaminathan et al., 2006).

Let f denote a function representing a gray-level image de�ned over a compact set of R2.

The standard Fourier-Mellin transform of f is given by:

8(k; v) 2 Z� R;Mf (k; v) =
1

2�

Z 1

0

Z 2�

0
f(r; �)r�ive�ik�d�

dr
r
; (2.6)

for 8(k; v) 2 Z � R. Z1 denotes the additive group of integers. R denotes the additive

group of the real line. f is assumed to be summable over R� � S+ (R� � denotes additive
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group of integers and R2) under the measure d� drr , i.e.

Z 1

0

Z 2�

0
jf(r; �)r�ive�ik�jd�

dr
r

=
Z 1

0

Z 2�

0

1
r
f(r; �)d�dr <1; (2.7)

since f is positive. Hence, the FMT could be divided into main three steps, which result

in the invariance to rotation, scaling and translation attacks:

� The Fourier Transform (FT): It converts the original image in spatial domain onto

spectrum domain. The magnitude of Fourier transform itself is the translation in-

variant.

� The Cartesian to Log-Polar Coordinates : The conversion to log-polar coordinates

converts the scale and rotation di�erences to vertical and horizontal o�ets that can

be measured.

� The Mellin Transform: A second FT, called the Mellin transform (MT) gives a

transform-space image that is invariant to rotation, scaling and translation.
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(a) Original image (b) Image in Log-polar transform

(c) Rotated image (d) Image in Log-polar transform

(e) Shifted image (f) Image in Log-polar coordinates

Figure 2.2: Example of Log-polar transform
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(a) Original image (b) FFT in Cartesian coordi-
nates

(c) FFT in Log-polar coordi-
nates

(d) Rotated image (e) FFT in Cartesian coordi-
nates

(f) FFT in Log-polar coordi-
nates

(g) Shifted image (h) FFT in Cartesian coordi-
nates

(i) FFT in Log-polar coordi-
nates

Figure 2.3: Example of Fourier-Mellin Transform
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2.3 Discrete Cosine Transform (DCT)

An additional sinusoidal transform (i.e. transform with sinusoidal based functions) related

to the DFT is the DCT. For an N � N image, the DCT is given by:

C(k; ‘) = �(k; ‘)
N�1X

i=0

N�1X

j=0

f(i; j) cos(
(2i+ 1)k�

2N
) cos(

(2j + 1)‘�
2N

) (2.8)

with

�(k; ‘) =

8
<

:

1
N for k; ‘ = 0
2
M2 for k; ‘ = 1; 2; : : : ; N � 1

The main advantages of the DCT are that it gives a real output image and that it is a fast

transform. A major use of the DCT is in image compression. Indeed, after performing a

DCT it is possible to discard the coe�cients representing high frequency components that

the human eyes is not very sensitive to. Thus, the amount of data can be reduced, without

seriously a�ecting the way an image appears to the human eyes.

In image compression, the DCT was established before the wavelet revolution and was

the space coding adopted by the JPEG still image compression standard (Pennebaker and

Mitchell, 1992). This transform is actually very close to the Karhunen-Lo�eve Transform

(KLT), which produces uncorrelated transforms coe�cients of a Gaussian source (Jain

et al., 1984).

(a) Original image (b) DCT domain

Figure 2.4: Discrete cosine transform of \Lena"
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2.4 Discrete Wavelet Transform (DWT)

The wavelet decomposition is a mathematical tool allowing the study of signals and signal-

generating processes characterised by a non stationary behaviour (Patrice, 1997). It ac-

counts for the evolution in time of the frequency content of a signal. A signal x (t) can

often be better analysed, described, or processed if expressed as a linear decomposition by

x(t) =
X

j;k

aj;k2j=2 (2jt� k) (2.9)

where the two-dimensional set of coe�cients aj;k is called discrete wavelet transform (DWT)

of x (t). Note that the basis functions  j;k(t) = 2j=2 (2jt� k) are generated from a single

function  (t) called ‘mother wavelet ’ by changing two parameters j and k. The location

of the wavelet moves in time or space, as the index k changes. This allows the expansion

to explicitly represent the location of events in time or space and enables a representation

of detail or resolution. A more precise way of indicating how the aj;k’s are calculated can

be written using the inner products as

x(t) =
X

j;k

h j;k(t); x(t)i j;k(t) (2.10)

2.4.1 Multiresolution Analysis

The multiresolution formulation of wavelet systems is designed to represent signals where

a single event is decomposed into �ner and �ner details (Burrus et al., 1998). As described

earlier for the wavelet, a set of scaling function is de�ned in terms of integer translates of

the basic scaling function ’(t) by

’k = ’(t� k) (2.11)

The subspace of Lr< spanned by these functions is de�ned as

V0 = Spank(’k(t)) (2.12)
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A two-dimensional family of functions is generated from the basic scaling function by

scaling and translation by

’j;k(t) = 2j=2’(2jt� k) (2.13)

whose span over k is

Vj = Spank(’k(t)) (2.14)

This means that if x (t) 2 Vj, then it can be expressed as

x(t) =
X

k

ak’(2jt� k) (2.15)

For j > 0, the span can be larger since ’j;k is narrower and is translated in smaller steps,

The basic requirement of multiresolution analysis is

V0 � V1 � V2 : : : � L2 (2.16)

Hence, the spaces Vj satisfy a natural scaling condition

x(t) 2 Vj , x(2t) 2 Vj+1 (2.17)

The important features of a signal can be better described by also using a set of wavelet

functions  j;k(t) that span the di�erences between the successive spaces Vj. Let us denote

the orthogonal complement of Vj in Vj+1 as Wj. It follows

V1 = V0 +W0 (2.18)

which extends to

Vn = V0 +W0 +W1 + : : :+Wn�1 (2.19)

Therefore, a signal x(t) 2 Vn can be expressed as

x(t) =
X

k

ak’(t� k) +
n�1X

j=0

X

k

d(j; k) j;k(t) (2.20)
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Eq. 2.23 represents a decomposition of x (t) with n resolutions(or scales). The �rst sum-

mation gives a function that is a low resolution or coarse approximation of x (t). For each

increasing index j in the second summation, a higher or �ner resolution function is added,

which adds increasing detail. This is somewhat analogous to a Fourier series where the

higher frequency terms contain the detail of the signal. From Eq. 2.16, it can be observed

that if a function ’(t) is in vj�1, it is also in Vj, which is the space spanned by ’(2jt).

This means ’(2j�1t) can be expressed in terms of a weighted sum of shifted ’(2jt)

’(2j�1t) =
X

n

h(n)2j=2’(2jt� n) (2.21)

Similarly, since Wj�1 � Vj;  (2j�1t) can be expressed as

’(2j�1t) =
X

n

g(n)2j=2’(2jt� n) (2.22)

Assume a signal x(t)2 Vj which can therefore be written as

x(t) =
X

k

aj�1;k2(j�1)=2’(2j�1t� k) +
X

k

dj�1;k2(j�1)=2 (2j�1t� k) (2.23)

where

aj�1;k = hx(t); 2(j�1)=2’(2j�1t� k)i =
Z
x(t)2(j�2)=2’(2j�1t� k)dt (2.24)

and

dj�1;k = hx(t); 2(j�1)=2’(2j�1t� k)i =
Z
x(t)2(j�2)=2’(2j�1t� k)dt (2.25)

From Eq. 2.21 and 2.22 one can deduce

aj�1;k =
X

m

h(m� 2k)aj;k (2.26)

and

dj�1;k =
X

m

g(m� 2k)aj;k (2.27)
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The last two equations represent a digital �ltering process followed by a down-sampling

(also called decimating) by a factor of 2. The down-sampler takes a signal x (n) as an

input and produces an output y(n) = x (2n). These equations show that the scaling and

wavelet coe�cients at di�erent levels of scale can be obtained by convolving the expansion

coe�cients at scale j by the time-reversed recursion coe�cients h(-n) and g(-n) then down-

sampling to give the expansion coe�cients at the next level of j -1. In other words, the

scale j coe�cients are �ltered by two FIR digital �lters with coe�cients h(-n) and g(-n).

Subsequently, the down-sampling gives the next coarser scaling and wavelet coe�cients.

These structures implement Mallat’s algorithm (Mallat, 1989) and have been developed

in �lter bank, quadrature mirror �lters, conjugate �lters, and perfect reconstruction �lter

bank in the literature (Smith and Barnwell, 1987; Vaidyanathan, 1987; Vetterli, 1987).

Mallat, Daubechies, and others showed the relation of wavelet coe�cient calculation and

�lter banks. The implementation of equations 2.26 and 2.27 is illustrated in Figure 2.5,

where the down-pointing arrows denote a down-sampling by two and other boxes denote

convolution by h(-n) or g(-n). This splitting, �ltering, and decimation can be repeated on

the scaling coe�cients to give the two-scale structure in Figure 2.6

Figure 2.5: One-stage wavelet decomposition
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Figure 2.6: Two-stage wavelet decomposition

This splitting, �ltering, and decimation can be repeated on the original �ne scale coe�-

cients and can be made from a combination of the scaling function and wavelet coe�cients

at a coarse resolution. This is derived by considering a signal in the j scaling function

space x(t) 2 Vj, which can be expressed as given by Eq. 2.23 or in terms of the scaling

function at the same level j by

x(t) =
X

k

aj;k2j=2’(2j � k) (2.28)

Substituting Eq. 2.21 and 2.22 into 2.23 gives

x(t) =
X

k

aj�1;k

X

n

h(n)2j=2’(2jt�2k�n)+
X

k

dj�1;k

X

n

g(n)2j=2’(2jt�2k�n) (2.29)

Because all of these functions are orthogonal, multiplying 2.28 and 2.29 by ’(2jt� k0) and

integrating evaluates the coe�cient as

aj;k =
X

m

aj�1;kk(k � 2m) +
X

m

dj�1;kg(k � 2m) (2.30)

This �nal equation is actually evaluated by up-sampling the (j -1) scale coe�cient sequence

aj�1;k, which means double its length by inserting zeros between each term, then convolving

it with the scaling �lter h(n). The same procedure is performed to the (j -1) level wavelet

coe�cient sequence dj�1;k and the results are added to produce the j level scaling function

coe�cients aj;k. This structure is illustrated in Figure 2.7. This process can be continued
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to any level by combining the appropriate scale wavelet coe�cients.

Figure 2.7: One-stage wavelet reconstruction

The resulting two-scale tree is show in Figure 2.8

Figure 2.8: Two-stage wavelet reconstruction

2.4.2 Properties

In practical applications, wavelet bases can judiciously be chosen to �t the behaviour of

the data to be analysed. An excellent choice of the wavelet bases can optimise coding

and quantisation algorithms. Indeed, a wavelet basis that produces more coe�cients with

a magnitude closed to zero is preferred more in data compression, since these coe�cients

require less bits to encode. The most relevant criteria are the number of vanishing moments,

the size of the support and regularity (Mallat, 1989; Villasenor et al., 1995).

The number of vanishing moments is related to the smoothness or di�erentiability of ’(t)

and  (t). The size of the support measures the interval in time in which the wavelet takes

non-zero values. Regularity is de�ned in terms of zeros of the frequency response function
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of the scaling �lter h(n) thus, indicating how fast the Fourier transform magnitude drops

o�, as the frequency progresses to in�nity. This is particularly related to the frequency

localisation of the decomposed signal.

The size of the wavelet support increases with the number of vanishing moments. The

wavelet regularity is important to reduce the artefacts. The choice of an optimal wavelet

in image compression is thus the result of a trade-o� between the number of vanishing

moments and artefacts (Antonini et al., 1992). Some useful properties of the wavelet

transform can be summarised as follows:

1. They can represent smooth functions.

2. They can represent singularities.

3. The basis functions are local. This makes most coe�cient-based algorithms naturally

adaptive to inhomogeneities in the function.

4. They have the unconditional basis property for a variety of function classes implying

that if one does not know much about a signal (for instance, a signal with a non

stationary behaviour), the wavelet basis is usually a reasonable choice.

5. They are computationally inexpensive with a complexity O(N ) compared to a Fourier

transform, which is N log(N ) or an arbitrary linear transform which is O(N2).

2.4.3 2-D wavelet transform

For 2-D data such as images, the most commonly used algorithm for wavelet decomposition

uses separable one-dimensional wavelets and scaling functions (Mallat, 1989).

This kind of two-dimensional DWT leads to a decomposition of approximation coe�cients

at level j in in four components: the approximation at level j� 1(aj�1), and the details in

three orientations (horizontal d(h)
j�1, vertical d(v)

j�1, and diagonal d(d)
j�1. Figure 2.9 describes

the basic decomposed steps for images.

An example of a one-stage decomposed image of \Lena" is illustrated by Figure 2.10. In

a similar way, the reverse process can be used to obtain the original 2-D signal.
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Figure 2.9: One-stage 2-D wavelet decomposition

(a) Original image (b) Decomposed image

Figure 2.10: One-stage 2-D wavelet decomposition of \Lena"

2.5 Conclusion

In this chapter, the basis and characteristics of 4 popular discrete transforms, namely Dis-

crete Fourier Transform (DFT), Fourier-Mellin Transform (FMT), Discrete Cosine Trans-

form (DCT) and Discrete Wavelet Transform (DWT), are reviewed. This is due to the

fact that these 4 techniques are currently very popular, within image processing. Such

transforms are the most challenging part of the image hashing in the feature extraction

stage, in order to extract image features that are invariant to content-preserving image

processing operations.
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Chapter 3

Proposed perceptual image hashing

in the DWT domain with

non-negative matrix factorisation

(NMF)

Recently, the discrete wavelet transform (DWT) has been successfully used in several image

hashing algorithms and was reported to outperform previous techniques (Antonini et al.,

1992; Venkatesan et al., 2000; Mih�cak and Venkatesan, 2002; Fawad and Siyal, 2006; Hu

and Niu, 2010; Hassan et al., 2012), because it characterises the image content both in

the spatial and the frequency domains. For instance, DWT based robust image hashing

was explored in Hu and Niu (2010). It has been shown to be highly robust to image

processing operations motivating other solutions in this direction. Monga and Mih�cak

(2007) presented a new image hashing algorithm by using a dimension reduction technique,

called non-negative matrix factorisation (NMF) (Lee and Seung, 2001). The advantage of

NMF hashing is the structure of basis resulting from its non-negative basis vectors, which

leads to a parts-based representation. Based on the results by Monga and Mih�cak (2007),

the NMF hashing possesses a good robustness under perceptually insigni�cant attacks.

41



Inspired by the potential of DWT and NMF for image hashing, a robust and secure image

hashing based on a pseudo-random sub-images selection in the DWT domain and NMF

is presented (Prungsinchai et al., 2012). The basic idea of the proposed image hashing

technique is to �rst transform the sub-images into DWT domain. The low frequency

sub-band coe�cients are used, and then NMF is applied to obtain robust image features.

The �nal step of the image hashing algorithm is to generate the binary image hash. The

objective of this method of analysis is to test the robustness of the image hashes generated

from the coe�cients of the LL sub-band and in addition, the security of the hashing

system. To show the advantages of the proposed hashing technique, a number of hashing

algorithms have also been applied on the same images for a fair comparison including SVD-

based image hashing (Kozat et al., 2004), feature points-based image hashing (Monga et al.,

2005), and DWT-NMF-based image hashing (Hassan et al., 2012) which was reported to

signi�cantly outperform other existing hashing approaches. Our preliminary experimental

results (Prungsinchai et al., 2012) showed that the proposed image hashing technique o�ers

better identi�cation performance under various attacks such as JPEG lossy compression,

media �ltering, additive noise etc. Section 3.1 provides a theoretical background. The

proposed framework for the perceptual image hashing scheme in the DWT domain is

shown in section 3.2. Section 3.3 presents an identi�cation and evaluation measure of

image hashing. Section 3.4 presents experimental results and analysis: robustness testing,

robustness versus discriminability testing and unpredictability testing. Finally, section 3.5

summarises the key ideas introduced in the chapter.

3.1 Theoretical background

3.1.1 Pseudo-randomly partition

The idea of pseudo-randomly selecting sub-regions or sub-images form an original input

image, as shown in Figure 3.1, has been used by Venkatesan (Venkatesan et al., 2000),

Monga (Monga and Mih�cak, 2007), and Jie (Jie, 2013). Venkatesan’s method (Venkate-
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san et al., 2000) and Mih�cak’s method (Mih�cak and Venkatesan, 2002) introduced im-

age hashing security by producing features from pseudo-randomly rectangles from which

features were generated. Monga’s method (Monga and Mih�cak, 2007) and Hernandez’s

method (Hernandez et al., 2011) employed a pseudo-randomly partitioning of the image to

introduce unpredictability in the hash values. Using pseudo-randomly partition algorithms

is desirable for security and also adds unpredictability of the hash value, which in turn

motivated us to use this technique to enhance the security of the hashing system. The

pseudo-randomly sub-images technique is described as follows:

� Pseudo-randomly coordinates : Pseudo-randomly select a P set of coordinates

(x,y) depending on the secret key and acquire P (xi; yi), for 1 �i� P.

� Generate region : Each P (xi; yi) is used to generate a square region as the based

point top-left corner of square region with size N -by-N , which is called sub-image.

(a) Secret key K1 (b) Secret key K2 (c) Secret key K3

Figure 3.1: Example of pseudo-random generating sub-images of \Lena" with di�erent
secret keys with size N -by-N

3.1.2 Non-negative Matrix Factorisation (NMF)

The NMF approach is a popular dimensionality reduction technique that has many useful

applications and has been successfully applied to a variety of tasks in various �elds e.g.

computer vision, text mining, etc. NMF is applied to high dimensional data and it provides

a low rank approximation form (Lee and Seung, 1999, 2001; Li and Fukui, 2007; Monga
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and Mih�cak, 2007; Korattikara et al., 2011). Given an image V with size n �m, V can

be approximately factorised into the product of two non-negative matrices W with size

n � r and H with size r �m (see Figure 3.2), where r is the rank of decomposition. In

practice, r is usually smaller than n and m, so that the non-negative matrices of W and H

are smaller than the original matrix V. The matrix W with size n� r contains the NMF

basic vector, and the weight matrix with the H with size r � m contains the associated

coe�cients.

V � WH (3.1)

Figure 3.2: Illustration of the NMF approximation

Cost functions

To measure the quality of the approximate factorisation V � WH, a cost function can

be constructed by using a measure of distance between two non-negative matrices W and

H. The two popular cost functions are the classical Euclidean distance or Frobenius norm,

given by (Pentti, 1997):

k V �WH k2=
X

i;j

(Vij � (WH)ij)2 (3.2)

Another measure commonly used in practice is V from (WH ):

D(V kWH) =
m�1X

i=0

n�1X

j=0

(Vij log
Vij

(WH)ij
� Vij + (WH)ij) (3.3)

The above measure is known as the generalised Kullback-Leibler (KL) divergence. It
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reduces to the standard Kullback-Leibler divergence, or relative entropy, when
P

ij Vij =
P

ij[WH]ij = 1, so that the matrices V and WH can be regarded as normalized probability

distributions. The lack of convexity of the aforementioned costs in both factors W and

H means it is unrealistic to expect a close from solution. In this work, the multiplicative

update rules were employed (Pentti, 1997) to �nd W and H as follows:

The multiplicative update rules were employed to �nd W and H as given by Pentti (1997);

Lee and Seung (2001)

Theorem 1 The Frobenius or Euclidean distance kV �WHk does not increase the update

rules :

Hlj  Hlj
(W TV )lj

(W TWH)lj
Wil  Wil

(V HT )il
(WHHT )il

(3.4)

Further, k V �WH k is invariant under these updates if and only if W and H are at a

stationary point of the distance.

Theorem 2, The divergence D(kV �WHk)is non-increasing under update rules :

Hlj  Hlj

Pm�1
i=0 WilVij=(WH)ijPm�1

i=0 Wil
Wil  Wil

Pn�1
j=0 HljVij=(WH)ij

Pn�1
j=0 Hlj

(3.5)

where i = 0, 2, : : : , m-1, j = 0, 2, : : : , n-1, l = 0, 2, : : : , r -1. Furthermore, D(V kWH)

is invariant under these updates, if and only if W and H are at a stationary point of the

divergence. Proof of these theorems can be found in Pentti (1997). It can be observed

that the updates are multiplicative. It is also straightforward to see that the multiplicative

factor is agreement when V = WH, so that the perfect reconstruction is necessarily a �xed

point of the update rules.
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3.2 Proposed perceptual image hashing in DWT do-

main with non-negative matrix factorisation (NMF)

The proposed perceptual image hashing scheme is illustrated in Figure 3.3. The image

hashing system operating in the DWT domain consists of four steps:

Figure 3.3: The proposed DWT-based image hashing scheme

� The pseudo-random sub-images step: Given an input image I with size M -

by-M. Pseudo-randomly based on secret key 1 to generate a set of coordinate pairs

P (xi; yi). Each coordinate pair P (xi; yi) corresponds to a sub-region Ai with size

N -by-N, which is referred here to as sub-image.

� The feature extraction step: 3-levels of the wavelet decomposition are applied

to each of the sub-images. A 3-level wavelet decomposition is shown in Figure 3.4,

where L represents low pass �ltering and H stands for a hight-pass �ltering. The

information of the approximation sub-band is a coarse version of the original image

and contains all the perceptual information of the image. Subsequently, the LL

sub-band is taken to the next step.
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Figure 3.4: Wavelet decomposition with 3 levels

� The dimension reduction step: In view of 3.1.2, NMF is applied to each sub-

image Ri to yield the coe�cient matrix Hm with size r � m denoted as Ci. All the

coe�cient matrix Ci are used as features which form a vector V c.

� The hash computation step: The vector V c is interleaved based on secret key 2

resulting in V c0 . Finally, the interleaved vector is used to generate the binary hash

values V h. A binary string is obtained by considering the di�erence between neigh-

bouring coe�cients as follows:

V h
i =

8
<

:
0, V c0

i � V c0

i+1

1, V c0

i > V c0

i+1

3.3 Identi�cation and similarity measure

Perceptual robustness is one critical criterion used to evaluate the performance of the

proposed image hashing algorithm. Ideally, a similar image Î of the original image I under

content-preserving distortions (CPOs) should have similar hashes, while two perceptually

di�erent images I and J should have di�erent image hashes. In this work, the evaluation

of this process is conducted in two aspects: identi�cation accuracy and Receiver Operating

Characteristics (ROC) analysis.
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3.3.1 Identi�cation process

The identi�cation accuracy is de�ned as the fraction of the distorted image copies that are

correctly classi�ed as versions of the original image. h1(i) is the binary hash of the original

image and h2(i) is the binary hash of another image. The normalised Hamming distance

could be used as a criterion to measure the similarity between two binary image hashes

H1 and H2, and can be de�ned as:

NHD(H1; H2) =
1
n

nX

i=1

jh1(i)� h2(i)j (3.6)

where n is the hash length. Recall from section 1.2, we consider the following requirements:

� normalised Hamming distance between the original image I and a similar version Î

should be close to 0.

� normalised Hamming distance between the original image I and a di�erent image J

should be close to 1.

3.3.2 Receiver Operating Characteristics analysis

The ROC curve is used, in which it depicts the relative tradeo� between TPR (bene�t)

and FPR (cost) of the identi�cation process. It is used to compare the performance of

di�erent image hashing techniques. To obtain the ROC curve and to analyse the image

hashing algorithms, the TPR(�) and FPR(�) are de�ned as:

TPR(�) = Probability(D(H(I;K); H(Î ; K)) < �) (3.7)

FPR(�) = Probability(D(H(I;K); H(J;K)) < �) (3.8)

where � is the identi�cation threshold. I and J are two perceptually di�erent or distinct

image, and the image Î is a version derived from the original image I. ROC curves were

generated by varying the threshold � from the minimum to the maximum value of all

48



distances. TPR against FPR were plotted in ROC curves which suggest that the best

possible performance should correspond to a point in the top left corner (coordinate 0,1)

of the ROC space.

3.3.3 Database and content-preserving operations

To evaluate the performance of the proposed image hashing algorithm, the dataset was

constructed with 120 original gray scale natural images. This included around 90 classic

benchmark images such as Lena, Baboon, Peppers, etc., and a variety of scenery and human

pictures, which were mainly selected from three group of categories in the content-based

image retrieval database of the University of Granada (CVG-URG, 2007). For each original

image with size 512 � 512, six classes of content-preserving operations (CPOs) including

JPEG lossy compression, median �ltering, AWGN, rotation, translation and histogram

equalisation were performed with various parameters on each original image as listed in

Table 3.1. For this experiment, all the operations were implemented using MATLAB. For

image rotation attack, a black frame around the image was added by MATLAB, however

some parts of the image were cut to keep their size the same as the new image (see an

example in Figure 1.2 (f) Rotation).

Table 3.1: Content-preserving operations with various parameters

Manipulation type Parameters
Image processing operations

JPEG lossy compression quality factor QF = 10�90
Additive White Gaussian Noise (AWGN) standard deviation � = 20�35

Median �ltering window size 3�9
Histogram equalization /

Geometric distortions
Rotation degree 3��9�

Translation window size 5�20
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3.4 Experimental results with the proposed image hash-

ing technique in DWT domain

Following the discussion given in section 3.2, the proposed image hashing algorithm will be

evaluated in two aspects. The �rst one is in relation to its perceptual robustness against

content-preserving operations (CPOs), which is important for content identi�cations issues.

It is desired that perceptually identical images under distortions would have similar image

hashes. The second one is the discriminative capability. It is believed that perceptually

di�erent images would have di�erent image hashes. To assess the proposed image hashing

algorithm with di�erent parameters given by P = 16 and 20, N = 64, 128 and 256 and r

= 1, as shown in Table 3.2. The hash length is dependent on the length of the number of

sub-images, size of sub-images and rank (r) of the decomposition as shown in Table 3.3.

The same secret key is used to generated image hash for di�erent images.

Table 3.2: Parameter setting in the proposed image hashing algorithm

Parameter Value
Number of the sub-images P = 16 and 20

Size of sub-images N = 64,128 and 256
Rank of NMF r = 1

Level of HAAR wavelet L = 3

Table 3.3: Length of hash

Block size Number of sub-images
N P = 16 P = 20
64 128 (binary) 160 (binary)
128 256 (binary) 320 (binary)
256 512 (binary) 640 (binary)
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3.4.1 Robustness testing

Robustness implies that image hashing functions should be robust in content-preserving

operations (CPOs) that include JPEG lossy compression, median �lter, AWGN, histogram

equalisation, rotation and translation, as the underlying content is perceptually identical

to the HVS. The normalised Hamming distance (NHD) between the image hashes of the

original image and the image hash of the operated image should be close to 0. To demon-

strate robustness, we �rst investigated the image hashing technique with regard to the

use of the size of sub-image and number of sub-images under di�erent attacks for \Lena"

image and the experimental results are plotted in Figures 3.6 to 3.11. It is clear that the

proposed image hashing consistently yields a higher robust/identi�cation accuracy under

di�erent types of tested content-preserving operations. The JPEG lossy compression (with

variance level: 90 v 10) is shown in Figure 3.6, median �ltering (with variance level: 3 v 5)

in Figure 3.7, and AWGN (with various level: 20 v 40) in Figure 3.8, it can be perceived

that for theses attacks the normalised Hamming distance (NHD) were lower than 0.03.

Figure 3.9 shows the histogram equalisation, the normalised Hamming distance (NHD)

was closer to 0.1. For the rotation (with various level: 3 v 5) as shown in Figure 3.10 and

translation (with various level: 5 v 15) as shown in Figure 3.11, the normalised Hamming

distance (NHD) from both rotation and translation attacks were lower than 0.5.

We also test the e�ect of the number of decompositions and the rank for NMF as shown in

Figure 3.5, where the receiver operating characteristics (ROC) graph is exploited to visu-

alise the classi�cation performance with respect to the robustness and the discriminative

capability under di�erent parameters. In the experiments, the used rank for NMF are 1

and 3, i.e., r = 1 and r = 3. For each rank, three number of decompositions are consider,

i.e., L = 1, L = 2 and L = 3. The number of the sub-images and size of sub-images are P

= 20 and N = 128, respectively. The test images used are discussed in subsection 3.3.3.

It is observed that, for �xed rank, the whole image hashing performance improves when

the number of decompositions increases. For a �xed number of decompositions, a bigger

rank deteriorates the image hashing performance. This is because large rank provide more

information in the hash about the image enhancing the discriminative capability, but not
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necessarily preserving the perceptual robustness. Generally, the image hashing perfor-

mance is related to hash length. A short image hash length could o�er robust hashes but

these may fail to discriminate di�erent images. As image hash length increases, discrimi-

native capability is strengthened while perceptual robustness decreases. An image hashing

is a compact representation, meaning that the image hash length is expected to be as short

as possible. Therefore, a trade-o� is needed in choosing the image hash length, i.e., the

values of L and r. From the experiments, we found that the choice of P = 20, the size of

blocks N = 128, rank for NMF (r) = 1 and number of decompositions (L) = 3 o�ered the

best performance and can reach a desirable compromise between the robustness and the

discriminability. In the rest of this chapter, the parameters P = 20, N = 128, r = 1 and

L = 3 will be adopted.
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Figure 3.5: ROC curves under di�erent parameters
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Figure 3.6: Robustness evaluation of the proposed technique for \Lena" image with di�er-
ent sub-image sizes and a number of sub-images under JPEG lossy compression attack
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Figure 3.7: Robustness evaluation of the proposed technique for \Lena" image with di�er-
ent sub-image sizes and a number of sub-images under a median �lter attack
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Figure 3.8: Robustness evaluation of the proposed technique for \Lena" image with di�er-
ent sub-image sizes and a number of sub-images under AWGN attack
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Figure 3.9: Robustness evaluation of the proposed technique for \Lena" image with di�er-
ent sub-image sizes and a number of sub-images under a histogram equalisation attack
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Figure 3.10: Robustness evaluation of the proposed technique for \Lena" image with
di�erent sub-image sizes and a number of sub-images under a rotation attack
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Figure 3.11: Robustness evaluation of the proposed technique for \Lena" image with
di�erent sub-image sizes and a number of sub-images under a translation attack

3.4.2 Robustness versus discriminability

A small normalised Hamming distance (NHD) between hash vectors extracted from the

original and its attacked images in section 3.4.1 does not necessarily mean that the image
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hashing system is reliable unless it could distinguish e�ciently between visually di�erent

images through di�erent hashes. ROC curves are exploited to visualise the classi�cation

performance and this is an e�ective way to compare di�erent image hashing techniques

with respect to the robustness and the discriminative capability. Let di be the distances

between the hashes extracted from the original and the attacked images, di (i = 1, 2,: : : ,

s). q is the distance between visually di�erent images d̂i (i = 1, 2,: : : , q). � is the

number of di�erent attacks used, which are listed in Table 3.1. The ROC curves were

generated by varying the threshold value � from minimum value to the maximum value of

distance and record probabilities (d < �) referred here as TPR and probabilities (d̂ < �)

referred here as FPR. Firstly, the calculated distances between the original and attacked

images were obtained (s � �) and secondly, the computed distances between each pair of

di�erent images were calculated and obtained with q = 7140 values for 120 images. It is

worth mentioning that the distance was used to compute TPR and FPR depending on the

nature of the hash. Indeed, since the DWT-NMF-based image hashing technique extracted

binary hashes, the normalised Hamming distance (NHD) is used to measure the similarity

between two binary hash vectors. The Euclidian Distance is used for real valued hashes

extracted via the SVD-based image hashing technique. Finally, the Hausdor� distance

was used for hashes corresponding to the coordinates of feature points extracted via the

feature points-based hashing technique. The parameters and hash length obtained from

each hashing technique are listed in Table 3.4.

Table 3.4: Parameters used in the implementation and hash length

Hashing technique Parameters Hash length
Proposed P = 20, m = 128, r = 1, and L = 3 320 (binary)

SVD p = 50, m = 256, d = 50, and r = 8 800 (real values)
Feature points 64 � 2 128 (coordinates)

DWT-NMF wavelet 3 levels, m = n = 64, and r = 5 320 (binary)

A statistical comparison of di�erent image hashing techniques was investigated, by study-

ing the corresponding ROC curves. The ROC curves provide a trade-o� between the true
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identi�cation and misclassi�cation. The overall ROC curves were generated for all types

of test content-preserving operations (CPOs) when applying di�erent hashing techniques

are illustrated in Figure 3.12. Figure 3.12 (a), shows that the proposed image hashing

technique achieved the best robustness and signi�cantly outperforms related techniques

under image precessing operations, closely followed by that the DWT-NMF-based image

hashing technique. This is because the statistics of sub-images computed in the LL sub-

bands are invariant. The feature point’s image hashing technique presented a slightly

lower performance under image processing attacks because their robustness against image

processing operations, especially additive noising and blurring is limited. The SVD-based

image hashing technique showed high sensitivity under image processing attacks, while

it performs well under geometric attacks. Figure 3.12 (b), shows that the feature points

image hashing technique o�ers the best performance under geometric attacks, closely fol-

lowed by the proposed image hashing technique, within a range of value for TPR > 0.927

and FPR > 10�2:518. Beyond this range, the proposed technique perform better. Observe

that the DWT-NMF-based image hashing technique provides poor performance under ge-

ometric attacks.

To test the robustness to each type of content-preserving operations (CPOs), an ROC curve

was also generated for each operation. The ROC curves corresponding to the six attacks

(i.e. JPEG lossy compression, median �lter, AWGN, histogram equivocation, rotation and

translation) are shown in Figures 3.13 to 3.15. Once again, the ROC curves in Figures 3.13

to 3.14 reinforce the observation that the proposed image hashing technique signi�cantly

outperforms other state-of-the art techniques of DWT-NMF-based image hashing, SVD-

based image hashing and feature points-based image hashing. However, the results shown

in Figure 3.15 the feature points-based image hashing performs slightly better than the

proposed technique under rotation and translation attacks in the corresponding range of

TPR > 0.883, FPR > 10�2:492 and TPR > 0.914, FPR > 10�2:996, respectively.
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Figure 3.12: The overall ROC curves for all types of test manipulations when applying
di�erent hashing techniques, (a) Image processing operations (b) Geometric attacks
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(a) JPEG lossy compression
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(b) Median �ltering

Figure 3.13: ROC curves for each type of manipulations when applying into di�erent image
hashing techniques, (a) JPEG lossy compression (b) Median �ltering
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(a) AWGN
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(b) Histogram equalisation

Figure 3.14: ROC curves for each type of manipulations when applying into di�erent image
hashing techniques, (a) AWGN (b) Histogram equalisation
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(a) Rotation
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(b) Translation

Figure 3.15: ROC curves for each type of manipulations when applying into di�erent image
hashing techniques, (a) Rotation (b) Translation

3.4.3 Unpredictability testing

In addition to robustness of image hashing, the security in terms of unpredictability bits

that arises from the key-dependent randomisation is an important property of the image

hashing technique. A high amount of randomness in the hash values makes it di�cult
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for the adversary to estimate or forge the hash values without knowing the secret keys.

We have estimated correlations between di�erent binary hashes via the binomial distri-

bution (Daugman, 1993). We generated 120 hashes for the images in the database, and

calculated the 7140 normalised Hamming distances between the hash pairs of di�erent

images. The distribution of the normalised Hamming distances is shown in Figure 3.16.

It can be found that the distribution of the normalised Hamming distance corresponds to

mean and standard deviation being � = 0.492 and � = 0.072. Since the standard deviation

of a binomial is given by � =
p
p(1� q)=N (where p = 0.5 and q = 1�p), this distribution

of normalised Hamming distance would correspond to a binomial process where N = 48.

A theoretical plot of the binomial process with N = 48 and p = 0.5 is also displayed by

as a solid line in Figure 3.16. Therefor, the likelihood of two binary hashes from di�erent

images matching completely by chance is one in 248, or approximate 2 � 10�15. This means

that 48 out of 320 hash bits (15%) are independent and unpredictable.
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Figure 3.16: Distribution of the normalised Hamming distance between hashing pairs of
di�erent images
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3.5 Summary

In this chapter, we introduced a new robust and secure image hashing technique us-

ing pseudo-randomly selected sub-images in discrete wavelet transform (DWT) and non-

negative matrix factorisation (NMF). Based on our experimental results, it has been noted

that the proposed technique is robust to a large class of content-preserving operations

(CPOs). We compared di�erent techniques e.g.feature points, SVD-based, and the DWT-

NMF-based. Because, the proposed image hashing technique uses wavelet transform, it still

su�ers from some geometric distortions, such as rotation and translation. The non-negative

matrix factorisation (NMF) dimension reduction technique is based on the approximate

NMF, which factorises the image matrix into two lower rank matrices. Consideration is

required in choosing a low rank r e.g. r1; r2 in the NMF because this e�ects the robust-

ness and discriminability of the system. A bigger rank will make better image hashing

performances. This is because of the increased the rank of decomposition means more

elements in the hash, which not only preserve the perceptual robustness, but also improve

the discriminative capability. Generally, a short image hash will have good robustness,

but low discrimination. As hash length increases, discriminative capability is strength-

ened while perceptual robustness slightly decreases. Base on the basic properties of image

hashing algorithm, note that image hash is a compact representation, meaning that hash

length is expected to be short enough. Therefore, a trade-o� is needed in choosing the

hash length, i.e., the values of L and r. In the next chapter, we plan to explore the invari-

ant transform referred Fourier-Mellin Transform (FMT) to extract robust features under

content-preserving operations (CPOs) especially geometric attacks.
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Chapter 4

Perceptual image hashing in

Fourier-Mellin Transform (FMT)

domain

The Fourier-Mellin transform (FMT) has been successfully used in numerous image recog-

nition and registration applications, because it is invariant to rotation, translation and

scaling (Lin et al., 2001; Alghoniemy M.and Tew�k, 2004; Guo et al., 2005; Swaminathan

et al., 2006). Inspired by the potential of the FMT for image hashing, a new robust

and secure image hashing technique based on overlapping blocks in FMT domain is intro-

duced (Prungsinchai et al., 2013). The basic idea of the proposed image hashing technique

consists of exploiting the properties of Fourier-Mellin transform into overlapping blocks to

extract robust features. To secure the image hashing system, two secret keys were used in

the pre-processing and hash computation steps. The rest of the chapter is structured as

follows: The proposed framework for perceptual image hashing is described in section 4.1.

Section 4.2 discusses the identi�cation and evaluation measure of the image hashing al-

gorithm. Experimental results for robustness testing, robustness versus discriminability

testing and unpredictability testing are presented in section 4.3. Finally, the key ideas

introduced in this chapter are summarised in section 4.4.
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4.1 Proposed of perceptual image hashing in FMT

domain

4.1.1 Fourier-Mellin Transform basic

As mentioned in section 2.2, let f denote a gray-scale level image de�ned over a compact

set of R2. Here, the FMT can be divided into three steps as follows:

� The Fourier transform (FT): It converts the translation of the original image

in the spatial domain.

I(x; y)! jFfI[m;n]gj (4.1)

where x and y are cartesian coordinates.

� The cartesian to Log-Polar coordinates : It converts to Log-polar coordinates,

and then maps the scaling and rotation into the horizontal and vertical translations.

F [k; l]! G(log�; �) (4.2)

where � and � are Log-Polar coordinates.

� The Mellin transform : Applying second Fourier transform (called Mellin trans-

form) in Log-Polar coordinates and converts into the o�sets of angles in the spectrum

domain to converts the Log-polar coordinates image, and then to return the magni-

tude feature image. The output is invariant to rotation, scaling and translation.

F [u; v]! FfG(log�; �)g (4.3)
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Figure 4.1: Example of Fourier-Mellin Transform, (a) Input image (b) Fourier spectrum
(c) Log-polar of spectrum (d) low-frequency area with size r -by-r

The proposed technique follows a three steps framework to generate the hash. As illustrated

in Figure 4.2.

Figure 4.2: The proposed FMT-based image hashing scheme

These three steps include:

� The pre-processing step: Given an input image I with size M -by-M. A low pass

�ltering by Gaussian kernel with a zero mean and � = 0.5 variance is applied, and

then a histogram equalisation is performed on the input image. This step aims to

reduce the e�ect of the common signal processing operations. The image is divided

into overlapping blocks size of m-by-m with the horizontal and vertical overlapping

of n-by-n, Iblock1; Iblock2; : : : ; IblockN as shown in Figure 4.3 (a) and (b). The indices

of the block sequence Iblock1; Iblock2; : : : ; IblockN are randomly scrambled using a secret

key K1 to obtain a block sequence with a new scanning order I 0

block1; I
0

block2; : : : ; I
0

blockN .
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An example of randomly ordered overlapping block with di�erent secret keys is shown

below in Figure 4.4.

(a) Overlapping blocks

(b) \Lena" image with blocks size 256-by-256 overlapping 128-by-128

Figure 4.3: Example of the overlapping technique

(a) Secret key K1

(b) Secret key K2

Figure 4.4: Example of a random ordered overlapping blocks with di�erent secret keys

� The feature extraction step: FMT is applied to I 0

blockN to extract features. In

this step, the central part of the low frequency area with size r -by-r is selected,

denoted by F 0

blockN , as illustrated in Figure 4.1 (d).

� The hash computation step: Each low frequency matrix from F 0

blockN is converted
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to vector V1; V2, : : : , VN (excluding the symmetric part of the spectrum). Then, two

low frequency features from each VN are randomly selected depending on the another

secret key, K2. Next, the �nal hash vector VF is formed by concatenation of the low-

frequency features.

4.2 Identi�cation and similarity measure

The evaluation of the proposed image hashing algorithm is conducted in two aspects:

identi�cation accuracy and Receiver Operating Characteristics (ROC) analysis.

4.2.1 Identi�cation process

The Euclidean distance is applied as a performance metric to measure the similarity and

discriminating capability between two hash vectors. The lower the Euclidean distance is,

the closer the two hash values. Let H1 is the hash of the original image and H2 is the hash

of a similar version or di�erent from the original image and it is de�ned as:

ED((H1); (H2)) =

vuut
nX

i=1

(h1(i)� h2(i))2 (4.4)

Normalised Euclidean distance (NED):

The Euclidean distance can be normalised with respect to the maximum distance of the

Euclidean distance strings, then normalised in the [0,1] range. The two images are percep-

tually similar and the distance is close to 0, whereas the distance is expected to be close

to 0.5 for two distinct images. The normalised Euclidean distance is de�ned as:

NED =
ED
�

(4.5)

where � is the maximum Euclidean distance among all tested distances.
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4.2.2 Receiver Operating Characteristics analysis

To obtain the ROC curve, the TPR(�) and FPR(�) are de�ned as:

TPR(�) = Probability(D(H(I;K); H(Î ; K)) < �) (4.6)

FPR(�) = Probability(D(H(I;K); H(J;K)) < �) (4.7)

where � is the identi�cation threshold. The image Î is a modi�ed version of I and J is a

distinct image of the original image I. Based on all distances between the original images

and their attacked versions. ROC curves were generated by varying the threshold � from

the minimum to the maximum value of all the distances. Given a certain threshold � , a

better image hashing should plot a higher TPR(�) with a lower FPR(�), simultaneously.

4.2.3 Database and content-preserving operations

The dataset with 120 original gray scale natural images were constructed. For each original

image with size 512 � 512, the similar versions were generated by manipulating the original

image according to a six classes of content-preserving operations as listed in Table 4.1. The

motivation is to construct such a database was to simulate some possible quality change

or a di�erent format of digital images due to noise, lossy compression and small rotation

manipulation. The normalised Euclidean distance between the hashes of the original image

and their attacked versions were measured. The normalised Euclidean distance between

the hashes of dissimilar images were also considered, which indicated the discriminative

capability of the hashing algorithm.
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Table 4.1: Content-preserving operations with various parameters

Manipulation type Parameters
Image processing operations

JPEG compression quality factor QF = 10�90
Additive White Gaussian Noise (AWGN) standard deviation � = 20�35

Median �ltering window size 3�9
Histogram equalization /

Geometric distortions
Rotation degree 5��9�

Translation window size 5�20

4.3 Experimental results with the proposed image hash-

ing technique in FMT domain

4.3.1 Robustness testing

This is to examine the robustness of the algorithm designed in section 4.1. The scheme

is mainly designed to successfully handle the rotation attacks and the trade-o� between

the robustness and security. Therefore, the performance of FMT image hashing is tested

with respect to the di�erence of block size and overlapping size under content-preserving

operations such as JPEG lossy compression, median �ltering, rotation and so on. For the

FMT approach, the parameters are set as shown in Table 4.2. The overlapping blocks can

be an e�ective approach to enhance security. The use of overlapping blocks can be justi-

�ed by their robustness under geometric changes (Kheli� and Jiang, 2010). For the sake

of illustration, Table 4.3 depicts results on the robustness against a number of geometric

attacks measured by the normalised Euclidian distance for \Lena" image with regards to

the use of overlapping and non-overlapping blocks. It was clearly observed that the fea-

tures extracted from non-overlapping and overlapping blocks did not have any signi�cant

e�ect.

In the rest of this chapter, the block size 64 overlapping size 16�16 with horizontal and
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vertical like squares of the same size and low frequency area r = 10 will be adopted. The

performance of the image hashing algorithm for three example images namely \Lena",

\Baboon" and \Peppers" are shown in Figures 4.5 to 4.7. Figure 4.5 (a) shows the per-

formance of the hashing algorithm under JPEG lossy compression. As can be seen, the

normalised Euclidian distance between two hashes extracted from the original image and

compressed image with a quality factor up to 10 is 0.34. The results obtained under JPEG

lossy compression show a good performance when the images are compressed with a qual-

ity factor higher than 30%. The normalised Euclidian distance under median �ltering and

AWGN attacks are lower than 0.45 and 0.35 as illustrated in Figures 4.5 (b) and 4.6 (a),

respectively. This is the e�ect of incorporating the low pass �lter and histogram equalisa-

tion in the pre-processing step.

In the case of geometric distortions, it can be observed that the performance of the pro-

posed technique is reasonably good for both attacks (see Figures 4.6 (b) and 4.7). In

Figures 4.6 (b) and 4.7 the normalised Euclidian distance between the hashes of the dis-

torted images and original images under rotation and translation attacks are close to 0.3

and lower than 0.35, respectively. It can be noted that the rotation and translation invari-

ance properties of Fourier-Mellin transform makes the system robust under these attacks,

unlike other transforms such as the wavelet transform seen in chapter 3.

Table 4.2: Parameters setting in the FMT-based image hashing algorithm

Parameter Value
Size of the block m = 64 and 32
Size overlapping n = 16

Length of the hash vector 128, 200, 512 and 1922
Low frequency area r = 10
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Table 4.3: Normalised Euclidian between the feature vectors extracted from the original
\Lena" image and its attacked versions Ov.:Overlapping blocks by sixteen pixels Non-Ov.:
Non-overlapping blocks

Attacks Block size 32 Block size 64
Non-Ov. Ov. Non-Ov. Ov.

Hash length 512 real value 1922 real value 128 real value 200 real value
Rotation 3� 0.106 0.110 0.128 0.101
Rotation 5� 0.164 0.165 0.152 0.162
Rotation 7� 0.213 0.212 0.202 0.214
Rotation 9� 0.252 0.249 0.248 0.253
Rotation 10� 0.263 0.262 0.269 0.269

Translation 3�3 0.090 0.091 0.093 0.095
Translation 5�5 0.153 0.151 0.151 0.154
Translation 7�7 0.211 0.209 0.206 0.208
Translation 9�9 0.260 0.261 0.261 0.260

Translation 10�10 0.284 0.286 0.288 0.282
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(a) JPEG lossy compression
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(b) Median �ltering

Figure 4.5: Performance robustness of the proposed technique under (a) JPEG lossy com-
pression (b) Median �ltering
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(b) Rotation

Figure 4.6: Performance robustness of the proposed technique under (a) Additive white
Gaussian noise (b) Rotation
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Figure 4.7: Performance robustness of the proposed technique under Translation

4.3.2 Robustness versus discriminability

Recall from section 1.2 that the properties of perceptual image hashing 1 and 2 determine

the performance in terms of robustness and di�erentiation. To evaluate both of these

properties, a statistical comparison between the proposed image hashing technique and

di�erent image hashing algorithms has been con through ROC curves. Given the distance

between visually di�erent images d̂i (i = 1, 2,: : : , q), and the distance between hashes

extracted from the original and the attacked images, di (i = 1, 2,: : : , s). Based on 120

images, q = 7140 possible distances can be obtained, and by considering � di�erent attacks

as listed in Table 4.1, are divided in two classes: image processing operations and geomantic

attacks, s = 120 � �. Image processing operations include JPEG lossy compression with

QF = 10, AWGN with standard deviation � = 20, median �ltering with window size 3 � 3,

histogram equalisation, while geometric attacks are rotation with 5� degree and translation

with window size 5 � 5. To show the advantages of the proposed hashing technique and

make the comparison as fair as possible, a number of hashing algorithms were also applied

on the same images and with the same attacks; namely wavelet-based hashing (Venkatesan

et al., 2000), feature points-based image hashing (Monga et al., 2005) and sub-images-
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DWT-based image hashing (Prungsinchai et al., 2012). The algorithms parameters used

in this implementation are described in Table 4.4. Table 4.5 lists the hash length obtained

for each image hashing technique. It is worth mentioning that the distance used to compute

TPR and FPR depends on the nature of the hash. Indeed, the wavelet-based image hashing

and sub-images-DWT-based image hashing techniques extracts binary hashes, and hance

the normalised Hamming distance (NHD) is used. The Euclidean distance is used for real

valued hashes extracted via proposed image hashing technique. Finally, the Hausdor�

distance is used for hashes corresponding to the coordinates of feature points extracted via

the feature points image hashing technique. The parameter used in implementation and

the hash length obtained from each image hashing techniques are listed in Table 4.4 and

4.5, respectively.

Table 4.4: Parameters used in the implementation Ov.:Overlapping blocks

Hashing technique Parameters
Proposed block size 64 Ov. 16 pixels and r = 10

Wavelet (Venkatesan et al., 2000) wavelet 3 levels, N = 150 rectangles
Sub-images and DWT (Prungsinchai et al., 2012) P = 20, m = 128, and r = 1

Feature points (Monga et al., 2005) 64 feature points

Table 4.5: Hash length for each assessed technique

Hashing technique Hash length
Proposed 200 (real values)

Wavelet (Venkatesan et al., 2000) 600 (binary)
Sub-images and DWT (Prungsinchai et al., 2012) 320 (binary)

Feature points (Monga et al., 2005) 64�2 = 128 (coordinates)

The overall ROC curves for all types of tested manipulations when applying di�erent

hashing scheme is shown in Figure 4.8. Figure 4.8 (a) if the feature points image hashing

techniques is taken as a reference point, we can be seen that the both the sub-images-

DWT image hashing technique and the proposed image hashing technique perform equally
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well under image processing operations. Once again, from the ROC curves in Figure 4.8

(b), it is clear that the proposed image hashing technique signi�cantly outperforms other

state-of-the art techniques in a reasonably good range for TPR > 0.950, FPR > 10�2:548.

This can justi�ed by the fact that the coe�cients extracted from the FMT-transform resist

geometric attacks as mention in chapter 2.

To show the robustness to each type of attacks, an ROC curve is also generated for each

attack and hash algorithm are shown in Figures 4.9 to 4.11. Figures 4.9 (a) and (b) illus-

trates the image hashing performance under JPEG lossy compression and median �ltering.

This is because the generated signatures from the coe�cients of the LL subband are invari-

ant against such attacks. Figures 4.10 (a) and (b) show the performance under histogram

equalisation and AWGN. It can be seen that the proposed image hashing technique give su-

perior performance due to the pre-processing step resisting under these attacks, Obviously,

wavelet-based image hashing provides less robustness under AWGN attack, because the

feature coe�cients are sensitive to such attack. While feature-point technique performed

better under AWGN attack.

In Figure 4.11 (a) the proposed image hashing technique provides the best performance

under rotation attack in the range of TPR > 0.895 and FPR > 10�2:475. Moreover, the

proposed image hashing provides the best performance under translation attack as shown

in Figure 4.11 (b).
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(b) Geometric attacks

Figure 4.8: The overall ROC curves for all types of test manipulations when applying
di�erent hashing schemes, (a) Image processing operations (b) Geometric attacks
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Sub-images-DWT [Supakorn 2012]

Feature points [Monga 2005]

Wavelet [Venkatasan 2000]
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(a) JPEG lossy compression
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Sub-images-DWT [Supakorn 2012]
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(b) Median �ltering

Figure 4.9: ROC curves for each type of manipulations when applying into di�erent image
hashing schemes, (a) JPEG lossy compression (b) Median �ltering
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Sub-images-DWT [Supakorn 2012]
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(b) AWGN

Figure 4.10: ROC curves for each type of manipulations when applying into di�erent image
hashing schemes, (a) Histogram equalisation (b) AWGN
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Sub-images-DWT [Supakorn 2012]

Feature points [Monga 2005]
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(a) Rotation
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Sub-images-DWT [Supakorn 2012]

Feature points [Monga 2005]
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(b) Translation

Figure 4.11: ROC curves for each type of manipulations when applying into di�erent image
hashing schemes, (a) Rotation (b) Translation
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4.3.3 Unpredictability testing

It is extremely important to ensure that the output produced by a hashing system cannot

be estimated or forged without knowing the correct secret key. Here, we have estimated

correlations between di�erent hashes via the binomial distribution (Daugman, 1993). Ide-

ally, if each hash is fully independent of every other hash, then the distribution of the

normalised Euclidean distances between such independent hashes is binomial with p =

0.5 and N = 200. The actual distribution of 7140 observed normalised Euclidean distances

between hashes extracted from di�erent image is shown in Figure 4.12. The empirical dis-

tribution has a standard deviation � = 0.095 and with a mean � = 0.528. Note that

most of the hash distances between di�erent images are closed to 0.5, which is close to

the ideal situation. Since the standard deviation of a binomial distribution is given by

� =
p
p(1� q)=N , the distribution of hash distances corresponds to a binomial process

where N = 28. A theoretical distribution is plotted of the binomial distribution with N

= 28 and p = 0.5, and also displayed by a solid line in Figure 4.12. As can be seen,

the theoretical distribution approximately �ts the actual data. Therefore, the likelihood

of two hash from di�erent images matching completely by chance is one in 228. That is,

28 out of 200 hash (14%) are independent and unpredictable. This shows a limitation

of the proposed technique which is mainly due to the nature of FMT. Indeed, the FMT

is not an e�cient decorrelating transform unlike discrete cosine transform (DCT)and the

Karhunen-Lo�eve transform (KLT) and hence the coe�cients used to extract the hash bits

are correlated with each other to some extent.
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Figure 4.12: Distribution of normalised Euclidian distance between hashing pairs of dif-
ferent images

4.4 Summary

In this chapter, a robust and secure perceptual image hashing technique based on the

fourier-Mellin transform (FMT) is proposed. Based on our experimental results, it has been

shown that the proposed FMT-based image hashing technique is robust to a large class of

image processing operations. The invariance property to rotation, scaling and translation

of FMT makes it more suitable for image hashing. Robust hashing is a promising solution

to the content identi�cation problem. The performance of the image hashing algorithm has

been assessed via the ROC curves. The experiments showed that the proposed algorithm

signi�cantly outperforms state-of-the art algorithms by achieving a higher TPR, while

it maintaining lower FPR. The robustness of the system was observed under geometric

attacks except for large rotation and translation manipulations, and that the distance

between the hash values of perceptually similar images was clearly separated from the

distance between di�erent images.
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Chapter 5

Perceptual image hashing in Discrete

Cosine Transform (DCT) domain

At present, the discrete cosine transform (DCT) is the current standard method for com-

pression in JPEG and MPEG (Pennebaker and Mitchell, 1992; International Standard,

ISO/IEC/JTC1/SC29 WG11, 1998). In 2002, a new wavelet-based compression standard

JPEG2000 was introduced, however, JPEG2000 has not been able to supplant JPEG,

which remains a main compression standard for digital cameras (Ponomarenko et al., 2007).

Several DCT-based image hashing algorithms have been proposed (Lin and Chang, 2001;

Sun et al., 2002; Kailasanathan et al., 2003; Tang et al., 2005), which have the advantage

of strong features for the transform to provide robustness. These robust features should

be robust/strong enough to minor pixel modi�cations that arise from image processing

manipulations such as JPEG lossy compression, median �ltering and so on. For exam-

ple, Lin and Chang (2001) proposed a robust image authentication method distinguishing

JPEG lossy compression from malicious manipulation. This was based on invariance in

the relationship between DCT coe�cients at the same position in separate blocks of im-

age. Their method can distinguish malicious manipulations from JPEG lossy compression,

irrespective of how high the compression ratio is. Kailasanathan et al. (2003) presented a

DCT based hashing function which resists an acceptable level of compression and image

processing operations such as Gaussian noise addition and median �ltering by considering
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a subset of DC coe�cients together with number of AC coe�cients. A robust image hash-

ing technique in the DCT domain was proposed by Tang et al. (2005). This scheme used

the DC and AC low frequency sub-bands, of DCT blocks to increase the signature’s dis-

criminability. The results from this scheme indicated that the similarity between original

images and their corresponding JPEG lossy compression images were fairly high although

the scheme was not robust against geometric manipulation.

Recently, the DCT sign coe�cients have been used in image registration, content-based

copy detection and image hashing (Kondo, 2001; Arnia et al., 2006; Yu and Sun, 2006;

Arnia, Fujiyoshi and Kiya, 2007; Arnia, Iizuka, Fujiyoshi and Kiya, 2007a,b; Arnia et al.,

2009). For instance, Yu and Sun (2006) presented image robust hashing based on DCT

sign coe�cients. In this algorithm, the DC sub-band of the input image was obtained

using a HAAR wavelet. Rectangular blocks with size of 64 � 64 are sequentially selected

for DCT calculating. Sign extraction was performed in the DCT coe�cients matrix of each

rectangular, then the �rst 32th AC coe�cients in zigzag order were selected. This algo-

rithm robustness under a large class of content-preserving operations (CPOs), especially

under the cropping attack which consists of removing rows and columns from the image.

Inspired by the potential of DCT for image hashing, two schemes of image hashing were

introduced. The basic idea of both image hashing methods are using the low frequency

sub-band of DCT coe�cients to achieve of the hash function for content identi�cation

issues. Section 5.1 presents the proposed image hashing technique in DCT domain. The

experimental results and analysis including robustness testing, robustness versus discrim-

inability testing and unpredictability testing are demonstrated in section 5.3. Finally,

section 5.4 concludes the key ideas introduced in the chapter.

5.1 Proposed of perceptual image hashing in DCT

domain

In this chapter, we propose two image hashing algorithms: algorithm A-DCT overlapping

block-based hashing and algorithm B-DCT sign-based hashing. The algorithm A is �rstly
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presented as it uses the low frequency DCT coe�cients in blocks and a randomisation

process to increase the security of the hashing system. Secondly, algorithm B, uses the

sign of DCT coe�cients, which carry information on edges and texture. Sign coe�cients

can be observed as the image hash for the content identi�cation purpose.

5.1.1 Algorithm A-DCT overlapping block-based image hashing

As mentioned in section 2.3, DCT is widely used for data compression and many other

operations. Owing to its ability to compact the energy of the image in a few coe�cients,

DCT clusters high valued coe�cients in the upper left corner (low frequency range) and

low value coe�cients in the bottom right of the corner (high frequency range). The image

could be represented by a few DCT coe�cients without losing much of the image quality.

The algorithm A-DCT overlapping blocks-based image hashing scheme, is illustrated in

Figure 5.1. This method adopted the block images strategy and low frequency DCT

coe�cients of every image block as robust features. The process is detailed as follows:

Figure 5.1: The proposed DCT overlapping block-based image hashing scheme

� The pre-processing step: Low pass �ltering of the input image I, this is to reduce

noise. The low pass �ltered image is divided the image into overlapping blocks

with size m-by-m with the horizontal and vertical overlapping of n-by-n, denoted as

ILblock1 ; ILblock2 ; : : : ; ILblockN , N is the number of blocks.

� The feature extraction step: DCT is applied to each block ILblockN to extract

the features. There are three frequency coe�cient sets: low frequency sub-band, mid
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frequency sub-band and high frequency sub-band. Each block is read in a zigzag

fashion to obtain the new DCT sequence as a vector (see Figure 5.2.(b)). Here, the

image hashing algorithm is based on the fact that much of the signal energy lies in the

low-frequency range around the top left corner, which contains the most important

visual parts of the image (see Figure 5.2). The �rst 2 AC coe�cients are pickup

from each block. The DC coe�cients contain the lowest frequency information of

the input image block, while the AC coe�cients contain the detail information. The

output is formed by concatenating the selected AC coe�cients in a new vector, V 0.

Figure 5.2: Example feature extraction step, (a) Original data matrix (b) Read zigzag
order into a vector

� The hash computation step: This is the process of extracting the binary hash

via binarisation. A secret key is �rst used to pseudo-randomly arrange the AC

coe�cients in new vector Ri, i = 0,1,: : : ,L. Then the median value Md is obtained in

this sequence. Note that the use of randomness is important for security proposes.

Md = median(Ri)(i = 1; 2; : : : ; N) (5.1)
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Then the hash is obtained in binary from as follows:

h(i) =

8
<

:
0, Ri < Md

1, Ri � Md

5.1.2 Algorithm B-DCT sign-based image hashing

As mentioned in section 2.3 Eq. 5.2 the DCT is given by:

C(k; ‘) = �(k; ‘)
N�1X

i=0

N�1X

j=0

f(i; j) cos(
(2i+ 1)k�

2N
) cos(

(2j + 1)‘�
2N

) (5.2)

where f(i; j) is the spatial image and �(k; ‘) is the DCT coe�cient. Gain control �(k; ‘)

is given by:

�(k; ‘)

8
<

:

1p
2 = (k = 0)

1 = (k 6= 0)

Only the sign values of the DCT coe�cients are utilised. The sign of C(k; ‘) are taken out

and inspired by DFT coe�cients sign S(k; ‘), given by:

S(k; ‘) = sgn(C(k; ‘)) (5.3)

Here sgn(x ) is determined using the following equation

sgn(x)

8
<

:
-1 = (x < 0)

1 = (x > 0)

The inverse DCT (IDCT) of the sign is called the DCT sign only image (DSOI) (Arnia

et al., 2006), and is obtained by applying the 2D IDCT to S(k; ‘). Although the DSOI is

visually di�erent from the original image (see Figure 5.3.(b)), it represents well the main

structure, e.g. texture, edges, contours, etc. and hence can be distinguished from other

images. Due to the compressive nature of the DCT, it is not necessary to use all DCT

sign coe�cients, in order to obtain a high-quality representation of the original image.
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Generally, half the number of the DCT sign coe�cients, taken in a zigzag order can be

used to reconstruct the DSOI of the original image (see Figure 5.3.(c)). As can be seen in

Figure 5.3.(e), by observing the DSOI reconstructed with only 2048 numbers of the DCT

sign coe�cients main part in relation to information that the original image carries can

be observed and allows to recognise the original image. Figure 5.4 showed the example of

zigzag and inverse zigzag order technique.
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(a) Total number of sign bits (b) Reconstructed image of (a)

(c) Half number of sign bits (d) Reconstructed image of (c)

(e) Only 2048 of sign bits (f) Reconstructed image of (e)

Figure 5.3: Reconstruction of the DCT sign only image (DSOI) for \Lena"
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(a) Zigzag order

(b) Inverts zigzag order

(c) Inverse zigzag with added ze-
roes

Figure 5.4: For example zigzag and inverse zigzag order

The algorithm B-DCT sign-based image hashing scheme is illustrated in Figure 5.5. The

main idea is to use the energy compaction property of the DCT sign values that carry a

signi�cant part of information representing the image in terms of texture, contours and

the edges of areas as perceptual features. The procedure consists of the following steps:
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Figure 5.5: The proposed DCT sign-based image hashing scheme

� The feature extraction step: Given an input image I. DCT is applied onto I to

extract the feature coe�cients. Then sign extraction in Eq. 5.3 performed on DCT

coe�cients matrix.

� The hash computation step: After the feature extraction step, all sign coe�cients

matrix were read in zigzag-scanned to form vector, and then the sign coe�cients from

the �rst to the nth AC coe�cients are selected to be the image hashes to represent

to the original image. A negative value of sign coe�cient corresponds to a hash bit

of zero (0). Likewise, a positive sign value corresponds to hash bit 1.

5.2 Identi�cation and similarity measure

5.2.1 Identi�cation process

The evaluation for the perceptual robustness of the proposed of image hashing algorithms

are to conduct the assessment in two aspects: identi�cation accuracy and ROC analysis.

Algorithm A-DCT overlapping block-based image hashing

The normalised Hamming distance (NHD) can be used to measure the similarity between

two binary image hashes in algorithm A. Let h1(i) be the binary hash of the original image

and h2(i) be the binary hash of a similar version or di�erent from the original image. The

normalised Hamming distance can be estimated between H1 and H2 and de�ned as:

NHD((H1); (H2)) =
1
n

nX

i=1

jh1(i)� h2(i)j (5.4)
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Algorithm B-DCT sign-based image hashing

The DCT sign only correlation (DSOC) function is applied to high-accuracy image regis-

tration proposes (Kuglin and Hines, 1975; Chen et al., 1994; Kuglin and Hines, 2002; Arnia

et al., 2006), when dealing with image translation. Let us consider two images, f(n1,n2)

and g(n1,n2). Let FC(k1,k2) and GC(k1,k2) denote the 2D-DCTs of the two images, respec-

tively. In this case, the DCT coe�cients are real numbers. The normalised cross spectrum

RC(k1,k2) of those images is given by:

RC(k1; k2) =
FC(k1:k2)
jFC(k1; k2)j

�
GC(k1:k2)
jGC(k1; k2)j

= sgn(FC) � sgn(GC)

= FS(k1; k2) �GS(k1; k2)

(5.5)

Where FS(k1; k2) and GS(k1; k2) are the signs values of FC(k1,k2) and GC(k1,k2), respec-

tively. The DSOC function rc(n1; n2) is obtained by applying the inverse DCT (2D IDCT)

on RC(k1; k2) as given by:

rc(n1; n2) = IDCT (FS(k1; k2) �GS(k1; k2)) (5.6)

rc is a 2D function which roughly represents the similarity between two images. Researchers

have observed that the DSOC corresponds to a peak if one image is a shifted version of the

other. This makes the magnitude of the peak invariant to shifting, although its location

may vary depending on the amount of shifting. The height of the peak can be used as a

good similarity measure for image matching. The height of the peak function is given by:

D = max(rc(n1; n2)) (5.7)

Figure 5.6 shows an example of image matching using the DSOC function. Where two

images are similar, their DSOC function gives a distinct sharp peak. When two images

are not similar, their peaks fall signi�cantly. Thus, the DSOC function exhibits a much

higher discrimination capability.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 5.6: Example of DSOC function, (a) image \Lena" f(n1; n2). (b) image \Peppers"
g(n1; n2). (e) DSOC function between the two original images image (a) and (b). (h)
DSOC function between two di�erent images (f) and (g). (k) DSOC function between the
original image (i) and the noise image (j). (n) DSOC function between the original image
and the shifted image (m).
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5.2.2 Receiver Operating Characteristics analysis

To analyse the identi�cation accuracy, ROC curves are also used to compare the perfor-

mance of di�erent image hashing techniques. To obtain ROC curves for the proposed

image hashing algorithms, the TPR(�) and FPR(�) are de�ned as follows:

Algorithm A-DCT overlapping block-based image hashing :

TPR(�) = Probability(D(H(I;K); H(Î ; K)) < �) (5.8)

FPR(�) = Probability(D(H(I;K); H(J;K)) < �) (5.9)

Algorithm B-DCT sign-based image hashing :

TPR(�) = Probability(D(H(I;K); H(Î ; K)) > �) (5.10)

FPR(�) = Probability(D(H(I;K); H(J;K)) > �) (5.11)

Where � is the identi�cation threshold: The ROC curves are generated by sweeping the

threshold � from the minimum to the maximum value of all the distances between the

manipulated and the original images, in order to compare the performances of the image

hashing approaches.

5.2.3 Database and content-preserving operations

A dataset 120 original gray scale natural images is constructed including around 90 classic

benchmark images, obtained by (CVG-URG, 2007). The motivation to construct such

a dataset is to simulate possible quality distortions of digital images such as noise in

broadcasting, transmission or di�erent format changes.The details are given in Table 5.1.
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Table 5.1: Content-preserving operations (CPOs) with various parameters

Manipulation type Parameters
Image processing operations

JPEG lossy compression Quality Factor QF = 90�10
Additive White Gaussian Noise (AWGN) Standard deviation � = 20�45

Median �ltering window size 3� 11
Histogram Equalization /

Geometric distortions
Rotation degree 3��14�

Translation window size 2�14

5.3 Experimental results with the proposed image hash-

ing technique in DCT domain

5.3.1 Robustness testing

Results of algorithm A-DCT overlapping block-based image hashing

The robustness of the algorithm A-DCT overlapping block-based image hashing is investi-

gated with respect to the overlapping blocks and non-overlapping blocks for the statistical

invariant extraction under content-preserving operations (CPOs). The overlapping blocks

were formed to extract the feature vector from the original image and its attacked versions.

As known, the statistics of blocks were approximately invariant under image processing

attacks, however, the use of overlapping blocks can be justi�ed by their robustness under

geometric changes (Kheli� and Jiang, 2010). For the sake of illustration, Table 5.2 depicts

results on the robustness against a number of geometric attacks measured by the normalised

Hamming distance, with regards to the use of overlapping and non-overlapping blocks. It

can be clearly seen that the feature coe�cients obtained through non-overlapping blocks

su�er more signi�cant changes when compared to those derived from overlapping blocks.

Additionally, the results of the robustness of the proposed algorithm A against image pro-
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cessing operations and geometric attacks with respect to the size of overlapping blocks

are plotted in Figures 5.7 to 5.11. It can be seen that the proposed technique exhibits

good robustness against di�erent attacks especially JPEG lossy compression and median

�lter attacks. Note that the performance improved as the size of blocks increased. This is

attributed to the fact that the larger blocks o�er better statistical invariance under image

processing operations and geometric attacks. It is meant here by statistical invariance

the robustness of statistical values, such as mean and standard deviation against di�erent

operations performed on the images. Therefore, a block of size 64�64 with horizontal and

vertical overlapping by 16 pixels is adopted in the rest of this chapter.

Table 5.2: Normalisation Hamming distance between the feature vectors extracted from
the original and its attacked versions Ov.:Overlapping blocks by sixteen pixels Non-Ov.:
Non-overlapping blocks

Image Attacks Block size 32 Block size 64
Non-Ov. Ov. Non-Ov. Ov.

Rotation 3� 0.214 0.196 0.140 0.140
Lena Rotation 5� 0.300 0.280 0.250 0.180

Translation 3�3 0.128 0.111 0.140 0.060
Translation 5�5 0.203 0.181 0.156 0.090

Rotation 3� 0.214 0.189 0.140 0.135
Peppers Rotation 5� 0.308 0.290 0.234 0.230

Translation 3�3 0.109 0.106 0.093 0.070
Translation 5�5 0.187 0.162 0.140 0.120

Rotation 3� 0.218 0.193 0.144 0.140
Baboon Rotation 5� 0.289 0.255 0.203 0.180

Translation 5�5 0.132 0.105 0.078 0.070
Translation 5�5 0.175 0.168 0.100 0.093
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Figure 5.7: Performance of algorithm A using di�erent block sizes for \Lena" image under
JPEG lossy compression attack with 16 pixels overlap

Figure 5.8: Performance of algorithm A using di�erent block sizes for \Lena" image under
additive white Gaussian noise attack with 16 pixels overlap
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Figure 5.9: Performance of algorithm A using di�erent block sizes for \Lena" image under
median �ltering attack with 16 pixels overlap

Figure 5.10: Performance of algorithm A using di�erent block sizes for \Lena" image under
rotation attack with 16 pixels overlap
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Figure 5.11: Performance of algorithm A using di�erent block sizes for \Lena" image under
translation attack with 16 pixels overlap

Results of algorithm B-DCT sign-based image hashing

The robustness of algorithm B-DCT sign-based image hashing algorithm has been assessed

with respect to the size of the sign coe�cients under six kinds of distortions as listed in

Table 5.1. The selected hash length n were 512, 1024 and 2048 bits. The rate of the peak

of DSOC for distorted images in relation to the peak of DSOC for original images is shown

in Tables 5.3 to 5.5. From the results, it can be observed that the proposed algorithm B-

DCT sign-based hashing is still superior under di�erent image processing operations that

include JPEG lossy compression, median �lter, AWGN and histogram equalisation attacks

and reveal the best performance from 89% to 100%. The results under the translation

attack shows that the rate varies from 24% to 80% while the results under the rotation

attack, vary from 7% to 57%. It was found that the choice of 512 sign coe�cients yields

a better performance under di�erent types of attacks. This is attributed to that fact that

the low frequency DCT coe�cients are more stable than other frequency coe�cients when

attacked. Moreover, the DCT sign coe�cients contained information that was related to

the DFT phase. The phase of DFT is very important for image processing; even phase
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information alone without the magnitude information of the image can be used to restore

a signi�cant part of the original version. In Table 5.3, some exceptions have been observed

for additive noise attack with � = 20 and histogram equalisation attack. This is due to the

image content itself where some images show higher and hence more robust coe�cients in

the high frequency range than others. The tables shows the limitation of the DCT sign-

based image hashing technique to deal with rotation attacks. In the rest of this chapter,

DCT sign coe�cients of size 512 bits are used.

Table 5.3: Peak of DSOC under di�erent attacks in comparison with the original \Lena"
image under di�erent attacks

Image Attacks 512 bits 1024 bits 2048 bits
Median �lter 3�3 99.10% 98.09% 97.73%
Median �lter 5�5 98.60% 97.47% 95.98%
Median �lter 7�7 97.27% 95.10% 93.25%

JPEG compression QF 90 100% 100% 100%
JPEG compression QF 50 100% 99.83% 98.89%
JPEG compression QF 10 97.24% 94.82% 92.20%

AWGN �=20 97.79% 97.94% 96.52%
Lena AWGN �=25 97.06% 96.11% 95.14%

AWGN �=30 96.93% 96.14% 95.42%
Histogram Equalisation 91.67% 90.52% 90.92%

Rotation 3� 49.47% 41.77% 28.03%
Rotation 5� 32.11% 23.07% 11.73%
Rotation 7� 21.41% 11.69% 7.67%

Translation 3�3 78.55% 70.31% 60.61%
Translation 5�5 66.34% 54.54% 40.00%
Translation 7�7 56.45% 40.25% 24.97%
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Table 5.4: Peak of DSOC under di�erent attacks in comparison with the original \Peppers"
image under di�erent attacks

Image Attacks 512 bits 1024 bits 2048 bits
Median �lter 3�3 99.93% 99.18% 99.15%
Median �lter 5�5 97.88% 97.20% 96.98%
Median �lter 7�7 96.25% 96.10% 94.96%

JPEG compression QF=90 99.65% 98.76% 99.85%
JPEG compression QF=50 99.12% 99.20% 98.85%
JPEG compression QF=10 98.85% 97.82% 95.82%

AWGN �=20 99.87% 98.76% 97.56%
Peppers AWGN �=25 99.17% 98.47% 96.80%

AWGN �=30 98.44% 98.08% 95.75%
Histogram Equalisation 94.46% 93.61% 92.65%

Rotation 3� 55.63% 41.83% 29.23%
Rotation 5� 36.90% 21.80% 12.78%
Rotation 7� 25.02% 16.59% 8.92%

Translation 3�3 79.98% 74.99% 62.57%
Translation 5�5 69.15% 61.38% 42.59%
Translation 7�7 56.15% 43.22% 26.08%
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Table 5.5: Peak of DSOC under di�erent attacks in comparison with the original \Baboon"
image under di�erent attacks

Image Attacks 512 bits 1024 bits 2048 bits
Median �lter 3�3 97.53% 96.19% 95.39%
Median �lter 5�5 96.39% 93.63% 92.67%
Median �lter 7�7 93.59% 90.35% 89.57%

JPEG compression QF=90 99.99% 99.64% 99.36%
JPEG compression QF=50 99.36% 98.28% 98.22%
JPEG compression QF=10 96.34% 92.79% 92.05%

AWGN �=20 99.64% 98.08% 96.44%
Baboon AWGN �=25 98.38% 96.83% 94.61%

AWGN �=30 97.99% 96.83% 93.86%
Histogram Equalisation 91.15% 90.61% 89.51%

Rotation 3� 57.42% 49.40% 33.47%
Rotation 5� 44.67% 34.27% 19.26%
Rotation 7� 35.34% 23.95% 16.12%

Translation 3�3 80.50% 73.80% 64.20%
Translation 5�5 69.99% 58.35% 41.61%
Translation 7�7 59.93% 43.55% 24.16%

5.3.2 Robustness versus discriminability

In this section, a statistical comparison of the proposed algorithm A-DCT overlapping

block-based image hashing, algorithm B-DCT sign-based image hashing, sub-images-DWT-

based image hashing and FMT-based image hashing algorithms has been performed by

studying the corresponding ROC curves. It is worth pointing outing that the distance

used to compute TPR and FPR depends on the nature of the hash. The normalised

Hamming distance (NHD) is used for binary hashes extracted via sub-images-DWT-based

image hashing and DCT overlapping block-based image hashing. The Euclidian distance

is used for the real-value hash extracted via the FMT-based image hashing technique. The

peak of the DSOC is used as a similarity measure between two hash vectors extracted via

DCT sign-based image hashing.

Firstly, the overall ROC curves for all types of manipulations when using di�erent im-

age hashing techniques are generated, and the resulting ROC curves are shown in Fig-
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ure 5.12. Figure 5.12 (a), shows that the algorithm B-DCT sign-based image hashing

and sub-images-DWT-based image hashing techniques performed equally well under im-

age processing operations closely followed by algorithm A-DCT overlapping block-based

image hashing and the FMT-based image hashing techniques. Figure 5.12 (b), shows that

the FMT-based image hashing technique provides the best performance under geometric

attacks in the range of TPR > 0.979, FPR > 10�2:519 closely followed by the B-DCT

sign-based hashing image technique which becomes the most e�cient in the range TPR

> 0.901, FPR > 10�2:678. While sub-images-DWT-based image hashing and algorithm A-

DCT overlapping block-based image hashing techniques are slightly sensitive. Moreover,

in order to assess robustness to each type of attacks separately and obtain a clear view,

an ROC curve is also generated for each particular attack and hash algorithm as shown in

Figures 5.13 to 5.15. It can be seen that the proposed algorithm B-DCT sign-based image

hashing technique o�ers the best performance, compared to others ( see Figure 5.13 and

Figure 5.14 (a) ). This is because the signatures generated from the corresponding coef-

�cients are invariant against such attacks. As can be seen the proposed DCT sign-based

image hashing technique performs extremely well under the translation attack as shown

in Figure 5.15 (b), and gives a comparable performance with FMT-based image hashing

under the rotation attack in the range of TPR > 0.958, FPR > 10�2:518. Beyond the range,

the performance of all the techniques tends to drop signi�cantly ( see Figure 5.15 (a) ).
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(a) Image processing operations

(b) Geometric attacks

Figure 5.12: The overall ROC curves for all types of test manipulations when applying
di�erent hashing schemes, (a) Image processing operations (b) Geometric attacks
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(a) JPEG lossy compression

(b) Median �ltering

Figure 5.13: ROC curves for each type of manipulation when applying it to di�erent image
hashing schemes, (a) JPEG lossy compression (b) Median �ltering
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(a) AWGN

(b) Histogram equalisation

Figure 5.14: ROC curves for each type of manipulation when applying it to di�erent image
hashing schemes, (a) AWGN (b) Histogram equalisation
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(a) Rotation

(b) Translation

Figure 5.15: ROC curves for each type of manipulation when applying it to di�erent image
hashing schemes, (a) Rotation (b) Translation
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5.3.3 Unpredictability testing

The security of image hashing is another important property for the proposed image hash-

ing techniques. Here, the security of image hashing is de�ned in terms of unpredictability

of the hash and it is the main focus. The binomial distribution is used to estimate the

correlations between di�erent hashes. The actual distribution of 7140 normalised Ham-

ming distance between the hash pairs of 120 di�erent images in database as mentioned in

section 5.2.3 is shown in Figure 5.16 and Figure 5.17, respectively. The empirical distri-

bution of the proposed DCT overlapping block-based image hashing and DCT sign-based

image hashing is displayed in Table 5.6. Once again, Table 5.6, DCT block-based image

hashing shows a standard deviation of � = 0.0603, with a mean of � = 0.494, a binomial

process with N = 70. The likelihood of two binary hashes from di�erent images matching

completely by chance is one in 270, or approximate 10�21. This indicated that 70 out of

320 hash bits (22%) were independent and unpredictable. The DCT sign-based image

hashing has a standard deviation of � = 0.0250, with a mean of � = 0.243. A binomial

process with N = 400. by chance is one in 2400, or approximately 3 � 10�120. This means

that, 400 out of 512 hash bits (78%) were independent and unpredictable. Obviously,

DCT sign-based image hashing is more secure than DCT overlapping block-based image

hashing. This is attributed to the fact that the information extracted from overlapping

blocks is redundant. This suggests that a number of hash bits share the same information

about the image content.

Table 5.6: The empirical distribution of hash values Ov.:Overlapping blocks

Proposed Stand deviation mean N independent and unpredictable
DCT Ov.-based 0.0603 0.494 70 70 out of 320 hash bits (22%)
DCT sign-based 0.0250 0.243 400 400 out of 512 hash bits (78%)
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Figure 5.16: Distribution normalised Hamming distance between distinct hashes of algo-
rithm A-DCT overlapping block-based

Figure 5.17: Distribution normalised Hamming distance between distinct hashes of algo-
rithm B-DCT sign-based

5.4 Summary

In this chapter, two new techniques of perceptual image hashing in DCT domain, DCT

overlapping block-based image hashing and DCT sign-based image hashing techniques are
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presented. The main idea was to extract robust features in the transform domain and

obtain a hash. Both image hashing techniques were investigated against a large class of

content-preserving operations (CPOs). Furthermore the techniques were compared with

related state-of-the art image hashing algorithms and shown to perform well under image

processing operations and geometric attacks. From the experimental results, it was ob-

served that the low frequency coe�cients for DCT sign-based image hashing were robust to

a large class of content-preserving operations (CPOs). Compared with the DCT overlap-

ping block-based image hashing, FMT-based image hashing and sub-images-DWT-based

image hashing techniques, the DCT sign-based image hashing technique, which exploits

the desirable property of representing the image with a few sign coe�cients, o�ers an en-

hanced performance. However, the inherent drawback of the DCT-sign approach is not

invariant against rotation attacks.
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Chapter 6

Conclusion

6.1 Contribution of the thesis.

In this thesis, perceptual image hashing has been investigated, from theory to applica-

tions. This thesis has presented new techniques for improving the perceptual robustness

and security of image hashing, proposed and evaluated on image dataset. We categories

the image hashing algorithm according to its major components, including pre-processing

of images, feature extraction and post processing. For security purpose, image hashing oc-

curring from pseudo-randomisation was analysed. Furthermore, a number of state-of-the

art image hashing techniques have been reviewed. We easily obtained the perspectives for

the recent developments in area of research in image hashing. A considerable amount of

the work investigated the robustness against content-preserving operations (CPOs) such

as additive white Gaussian noise, JPEG lossy compression, median �ltering, rotation and

translation attacks. These types of distortions are the most common ones, to which the

proposed scheme should be robust enough to achieve reliability. Researchers in the area of

perceptual image hashing should consider their algorithms to deal with these preliminary

distortions.

The �rst investigation of the thesis is in the discrete wavelet transform (DWT) domain,

which applies pseudo-random sub-images and a recent dimension reduction technique, re-
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ferred to as non-negative matrix factorisation (NMF), into the hash generation. The image

is divided into overlapping sub-images by pseudo-random sampling and treated as image

features, which could be further a feature extracted by DWT. The image is then pro-

jected into a lower dimensional space by NMF in order to generate a compact image hash.

Finally, the hash vector is generated. The pseudo-random sub-image and NMF are desir-

able properties to generate robust and secure image hashes. From the robustness of the

proposed image hashing demonstrated in experiments, the image hashing technique was

investigated with regard to the use of the size of sub-image and number of sub-images.

From the experimental results, it was noted that the pseudo-random sub-images and NMF

can be incorporated into DWT image hashing to improve the performance under content-

preserving operations (CPOs), such as JPEG lossy compression and median �lter etc., but

they were sensitive to geometric attacks.

In the second investigation of the project, a novel image hashing algorithm based on

the Fourier-Mellin transform (FMT) domain was presented. FMT was successfully used

in many image registration applications, image hashing and image watermarking areas.

The proposed FMT-based image hashing scheme was shown to be more robust than the

sub-images-DWT-based image hashing under geometric attacks. The major bene�t of em-

ploying FMT is its spectrum is invariant to rotation, translation and scaling. However, the

inherent drawback of the Fourier transform makes FMT only robust to geometric trans-

form, but vulnerable to other image processing operations such as cropping and noise.

This is due to the reason that when an image is converted into the spectrum domain

by 2D FT, each coe�cient value involves all the pixels of the image. It means that the

Fourier coe�cients are dependent on the global information of the image in the spatial

domain. Therefore, we incorporated the low pass �ltering and histogram equalisation into

the proposed FMT image hashing scheme to improve its performances under image pro-

cessing operations. Based on the experimental results, it was shown that FMT-based image

hashing gives a superior robustness against various content-preserving operations (CPOs),

especially translation attacks. The limitation of the FMT-based image hashing technique

is discriminability. Discriminability suggests that two di�erent images should provide two
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dissimilar hashes. The FMT used the Fourier spectrum which fails to di�erentiate between

images of di�erent contents.

The third investigation of the project is perceptual image hashing based on the discrete co-

sine transform (DCT). As known, the DCT has been used in image compression standards.

The DCT coe�cients exhibit characteristics of the image that were able to survive distor-

tions e.g.a format change, or re-compression. The signi�cance of the proposed DCT-based

image hashing lies in two aspects: algorithm A-DCT overlapping block-based image hash-

ing and algorithm B-DCT sign-based image hashing. The DCT overlapping block-based

image hashing technique used the low frequency coe�cients and then used a randomisation

technique to enhance security. The image is divided into overlapping blocks with a partic-

ular size and then a small number of low frequency coe�cients are selected from the DCT

block. Form the experiments, the performance of the proposed algorithm A-DCT overlap-

ping block-based image hashing performed well under image processing attacks, although

it remained sensitive to geometric attacks. In algorithm B-DCT sign-based image hashing,

the main idea was to use the energy compaction property of the DCT sign values, which

carry a signi�cant part of information, representing the image in terms of texture, contours

and areas of edges, as perceptual features. The proposed B-DCT sign-based image hashing

scheme was demonstrated to be more robust than the proposed A-DCT overlapping block-

based image hashing under geometric attacks. In relation to the experimental results, the

scheme B-DCT sign-based image hashing produced a superior performance under content-

preserving operations (CPOs). The DCT sign-based image hashing scheme has also been

shown to be the most secure technique compared to other techniques proposed in this

research as it o�ers the highest rate of bit independence in a hash. However, the drawback

of proposed B-DCT sign-based image hashing technique resides in its limited robustness

against rotation attacks.

To the best of the author’s knowledge, no existing work provides a complete solution

for perceptual image hashing with respect to content identi�cation issues, and these ap-

proaches do have limitations. However, the proposed image hashing techniques reported in

this thesis provide promising results and tackling important issues of image hashing such as
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robustness and discriminability. With the result obtained throughout the thesis, the aims

and objectives set out in section 1.3 have been satisfactorily achieved. Nevertheless, with

technology development in this area, more work is required to ensure a trade-o� between

robustness and security in perceptual image hashing.

6.2 Recommendation and Future work.

This thesis has presented a novel image hashing algorithm in di�erent transform domain.

Although promising results have been satisfactorily achieved, we would like to underline

some future research directions at the end of this thesis.

� The DCT-sign based image hashing scheme proposed in chapter 5 has shown very

good performance in terms of robustness and discriminability under di�erent signal

processing attacks. It has also been shown to be robust against translation attacks.

However, the results showed that it still su�ers from small rotations because the

DSOC function can recover translations only. Therefore, as part of our future work

plan, we propose to apply a log-polar transform to the image prior to applying the

DCT and extracting DCT-sign coe�cients that construct the hash. The log-polar

transform converts any rotational changes into vertical shifting with a proportional

amount of translation (see Figure 2.2).

� The security of the proposed hashing techniques has been assessed in terms of the

unpredictability. This gives the proportion of independent bits in a hash. However,

another security measure, called unicity distance, consists of determining the number

of image/hash pairs required to estimate the secret key. This measure will be used

in future to analyse further the security of the proposed systems.

� Visually salient regions play an essential role in the determination of video copies

because most of the attacks that occur on video data tend to keep the signi�cant

parts of the video in order to maintain its perceptual content and alter non-salient

regions. In order to exploit this feature, a judicious idea would be to design a
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hashing algorithm that assigns high weights to hash bits corresponding to salient

regions during the hash matching process. This way, salient regions-based hashing

can be used to identity image content because the attacker cannot destroy the salient

regions from which the hash is extracted.

� Perceptual hashing will be used as an image-dependent key to secure watermarking

systems. Indeed, one of the main weakness of watermarking systems resides in the

use of a constant key for large number of images. The multi-use of the same key

allows the attacker to estimate the key and break the security of the system.
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