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ABSTRACT

ABSTRACT

Harmonic resonance occurs when the network equivalent shunt harmonic capacitive reactance
is associated with the network series harmonic inductive reactance. When such resonance
occurs, it amplifies harmonic components with frequency close to the resonance point.
Solutions used to solve harmonic resonance problems can be divided into two main
categories. One is to reduce the content of harmonic components in the network (e.g. by using
active or passive harmonic filters, etc.) and the other is to remove the resonance stimulating
factor by shifting away the resonance frequency to a non-critical frequency range (e.g.
detuning PFC capacitors, redesigning feeder transformers, etc.). Studies show that these
techniques are not adequate to solve harmonic resonance problems in power distribution
networks which are dynamic by their nature and with complex interconnections. Due to this,
solutions in the category one are designed for localised harmonic distortion compensation,
while solutions in the category two lack real-time operation feature. Therefore, it was
identified that there is a need for real-time harmonic resonance attenuation that is suitable for
power distribution networks. In this thesis, a new real-time Harmonic Resonance Attenuation
(HRA) technique is proposed. This technique may be used with ordinary shunt harmonic
filters to make them behave like a virtual shunt capacitor or inductor. Thus, looking from the
harmonic current source side, the filter alters the network harmonic impedance and hence
results in harmonic resonance attenuation.

In order to implement the HRA technique, fast measurement of system harmonics in real-time
is required. Therefore, in this work, a fast individual harmonic extraction (FIHE) technique is
developed to enhance the desired real-time operation of the HRA. The proposed FIHE needs
only one sixth of the fundamental cycle to extract any individual harmonic component which
is faster than other methods currently available. In addition to the speed, the proposed FIHE
provides overshoot free, oscillation free and ripple free extraction characteristics.

The proposed HRA and FIHE techniques are described in this thesis with detailed analysis to
illustrate their operating principles. A series of simulations and experiments are conducted to
evaluate their functionality and performance. Results of the evaluation are presented and
discussed in this thesis together with details of the experimental HRA model developed to

verify the theoretical and simulation results.
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1.1 Harmonic Pollution

Since the first a.c. power network was developed around 120 years ago, electricity
supply is assumed to have a constant frequency (50 Hz or 60 Hz) sinusoidal voltage.
Most of the electrical engineers exercise this assumption when designing and operating -
electrical equipment. However, in practice, electricity is supplied to both linear and

non-linear loads. When a sinusoidal voltage is applied to a non-linear load, the
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resulting current would be distorted (non sinusoidal). Due to the presence of system
impedance, distorted current causes non-sinusoidal voltage drop across this impedance
and causes voltage distortion through out the system. This phenomenon is illustrated in

Figure 1.1.

Harmonic
| voltage drop (Vy) ] I
2 3 o
Source Z H Network Z ’—
Voltage Harmonic 1
Source vV Current =

source

—_

Figure 1.1: Generation of harmonic voltage

Fourier analysis shows that, distorted waveforms can be decomposed into a series of
sine waves with different amplitudes, phases, and frequencies. Periodic components
with frequencies that are integer multiples of the fundamental (generated) frequency
are referred to as ‘harmonics’. Components with frequencies that are non-integer
multiples of the fundamental frequency are referred to as ‘sub-harmonics’ and ‘inter-

harmonics’

In a balanced three-phase system, the generated fundamental voltages are evenly
displaced by 120° in phase; consequently, harmonic components in three-phase
systems are shifted proportionally in this order. Applying symmetrical component
analysis; harmonic components caused by three-phase, non-linear loads in such
systems can be grouped into three sequences:

e Positive sequence — for the harmonic order 3n+1 (i.e. 1%, 4%, 7%  etc.)
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e Negative sequence — for the harmonic order 3n-1 (i.e. 2", 5%, g etc.)
e Zero sequence — for the harmonic order 37 (i.e. 31 g™ gt etc.)

Note: ‘n’ is an integer from 1 to infinity

As a common practice, power suppliers try to maintain three-phase systems
symmetrical, free of d.c. component and even order harmonics. However, odd order
harmonic components associated with three-phase, non-linear loads are more difficult

to be eliminated and hence their level in power distribution networks is significant.

Due to the 120° phase shift, ‘delta/star’ transformer configuration is widely used to
stop circulation of the triple-n (zero sequence) harmonic components in the supply
network. Therefore, it is common to assume that, odd order positive sequence and
negative sequence harmonic components are the significant parts when studying

system distortion.

1.1.1 Harmonics sources

In the past, non-linear loads were often referred to electric arc furnaces, fluorescent
lamps, faulty machines, and overloaded/saturated transformers, as these were the main
harmonic sources in power networks. However, in the past two decades, the success in
semiconductor technology has sharply increased the use of power electronic devices in
the modern electrical equipment [1]. Often, power electronic components are used in

power supply units of such equipment for power conversion and regulation purposes
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(e.g. adjustable speed drives, frequency converters, switching mode power supplies,

etc.).

Harmonic distortion caused by power electronic based equipment has attracted a great
concern from both utilities and the end-users [2,3], as these equipment have pushed the

level of harmonics pollution to a point that has never been experienced before {4-11].

In the near future, the growth of renewable power generation is expected to introduce
more power electronic devices to power networks at both transmission and distribution
networks levels [12]. This will require power electronics based interface to ensure the
maximum power delivery and good quality of supply (i.e. stability, efficiency,
continuity, etc.). However, it is anticipated that the switching nature of these interface

devices will introduce a significant amount of harmonics to the network.

1.1.2 Effect of harmonics

Voltage and current distortions are associated with energy and economic losses for
both, suppliers and consumers of electricity. Main detrimental effects introduced by
harmonics are [13]:

o Mal-function of the control systems, protective devices, efc.
o Interference with metering, instrumentation, communications systems, etc.
» Extra losses causing heating and overloading on devices and equipment.

e Torque pulsation effect on rotating machines
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Electrical machines are designed based on the assumption that the voltage supply is
sinusoidal. Distorted supply causes extra eddy current and skin effect losses in the
stator and rotor, and produces extra heat. Presence of harmonic currents in the machine
windings introduces instable motoring action that causes uneven torque generation

(torque pulsation). These effects would eventually shorten the useful life of a machine.

When harmonic currents flow in a transmission line, extra loss due to increased r.m.s.
value and skin effect would be created. In a ‘weak’ power network, higher line
impedance causes greater harmonic voltage drop resulting in higher electromagnetic
interference and voltage disturbance. As a result, adjacent communication networks
and power system’s protection devices are affected (e.g. missed triggering, lower

accuracy, etc.).

Harmonic currents create extra eddy current loss in the windings, and hysteresis loss in
the core of transformers. These losses generate extra heat in the transformer, which
reduce its efficiency and stresses the insulation consequently shorten its life
expectancy. Excessive harmonic currents would eventually saturate the transformer

and might create short circuit between the windings.

Harmonic currents shorten the service life of a capacitor. Capacitors exhibit lower
impedance to high frequency components. When harmonic currents flow in a
capacitor, higher IR loss would be generated due to the capacitor’s equivalent series

resistance. This resistance increases slowly throughout the capacitor life, which leads
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to a gradual rise in power loss (heat) and eventually to thermal run away or excessive

capacitance drift.

1.2 Harmonic Resonance

Harmonic resonance occurs when the natural frequency of a power system matches the
frequency of a harmonic component. At this frequency, system’s equivalent inductive
reactance (e.g. source, line, transformers, etc.) is equal to the equivalent capacitive
reactance; e.g. Power Factor Correction (PFC) capacitors, passive filters, long distance

underground cable’s capacitance[14,15], etc.

A low impedance path appears to the harmonic current when the equivalent inductance
and capacitance are in series (series resonance). When parallel resonance occurs, it
exhibits a high impedance path to the harmonic current and results in a proportional

rise in the harmonic voltage.

Figure 1.2(a) shows a schematic diagram of a typical power distribution network. The
equivalent circuit of this network that is suitable for harmonic current flow analysis is
shown in Figure 1.2(b). In this case, non-linear loads are modelled as an ideal
harmonic current source, and the generator is represented by its internal impedance.

All equivalent series resistances are ignored in this example.
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(b) Equivalent circuit of the system

Figure 1.2: A simplified power system network and its equivalent circuit

Looking into the system from the harmonic current source side, it forms a parallel

circuit. Therefore, the harmonic impedance (z) at the network natural frequency as

seen at the Point of Common Coupling (PCC) rises significantly and results in a

corresponding rise in the same frequency harmonic voltage of the same frequency at

the PCC (vy). This results in a proportional increase in the harmonic current in every

branch (i ip2ip3,ip4)-

Amplification of harmonic voltage and current in this manner may create problems to

network users, which may have significant economical consequences and in some

cases, human life might be endangered.

1.2.1 Previous studies

Several research studies have been carried out to understand and try to solve the

problems caused by the harmonic resonances. In order to have a better understanding
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about harmonic resonance, causes, symptoms shown when it occurs, consequences and
solutions applied, a series of documented harmonic resonance cases were carefully

studied and these are summarised in this section.

A case of harmonic resonance that occurred at a paper mill in the British Columbia,
Kitimat was reported in the year 1990 [16]. Use of an extra (standby) PFC capacitor
bank creates 5™ order harmonic resonance. The resonance amplifies 5™ order harmonic
current (approximately 80 times), and causes a major failure on its standby incoming
13.8 kV circuit breaker. As a result, the protection system was completely destroyed by
fire. The procedure adopted to solve this problem was to detune the PFC capacitor

bank with a series reactor.

McLean et al. published a case of harmonic resonance at the offshore oil plant in 1993
due to the sub-sea cable[17].The problem was caused by a 22.5 km submarine power
cable that was used to supply power from a mother platform to one of the satellite
platform. Capacitance of the cable associates with the reactance of a 6.6/20 kV
transformer located at the main platform and creates an 11" order harmonic resonance.
As a result, 11™ order harmonic current generated by a drilling rectifier connected at
the satellite platform was amplified and causes voltage harmonic distortion that is over
the limit of G5/3. Several solutions were proposed, but a cost effective one was
implemented by utilising a passive notch filter to filter out the harmonic current
generated. Initially, a notch filter bank, which includes 7™, 11"™ and 13™ order harmonic
notch filters, was designed. However, due to the parallel resonance effect of the tuned

7" order harmonic filter an additional 5™ order harmonic notch filter was required in












































































































































































































































































































































































































































































































































































































