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Summary

In his text ‘On Architecture’, Vitruvius suggested that
architecture is an imitation of nature. Here we discuss
what happens when we begin using nature in
architecture. We describe recent developments in
the study of biofilm structure, and propose combin-
ing modern architecture and synthetic microbiology
to develop sustainable construction approaches.
Recently, Kolodkin-Gal laboratory and others revealed
a role for precipitation of calcium carbonate in the
maturation and assembly of bacterial communities
with complex structures. Importantly, they demon-
strated that different secreted organic materials shape
the calcium carbonate crystals formed by the bacterial
cells. This provides a proof-of-concept for a potential
use of bacteria in designing rigid construction materi-
als and altering crystal morphology and function. In
this study, we discuss how these recent discoveries
may change the current strategies of architecture and
construction. We believe that biofiim communities
enhanced by synthetic circuits may be used to con-
struct buildings and to sequester carbon dioxide in
the process.
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Introduction

Building construction and maintenance constitute a
major source of greenhouse gasses. In addition to the
upfront environmental costs of construction, buildings
tend not to be adaptable to change — requiring for exam-
ple mechanical heating and ventilation and being subject
to costly and materially inefficient dismantling at the end
of their lives. Inefficient use of energy and materials in
construction poses a major challenge for the next gener-
ations and was included in the pivotal resolution adopted
by the General Assembly in 2015 — ‘Transforming our
world: 2030 Agenda for Sustainable Development’ as
Goal 11: Sustainable Cities and Communities. Therefore,
one of the main goals of architectural science is the
development of alternative, energy-efficient materials
and methods of construction, adaptable to environmental
conditions.

Examples of this emerging research include the devel-
opment of Material Based Design Computation (hereafter
MBDC). The term MBDC was defined as ‘the process of
computationally enabled form-finding, informed by mate-
rial properties (Oxman and Rosenberg, 2007). The
MBDC process makes use of computational modelling of
materials with simulations of, for example, loading (e.g.
finite element analysis) being used to generate a form
for manufacture. Using 3D printers capable of printing in
more than one material and varying the density of each
material gives the designer tight control over the struc-
ture — using materials only where they are necessary.
Oxman illustrates this with a chair, which surface is
designed so that its variegated stiffness accommodates
different levels of ergonomic support. This construction
technique allows for the creation of functionally graded
materials (Oxman et al., 2011). This area of research is
often inspired by biological processes, such as bone
remodelling in response to forces in the environment.
Unlike biological systems, however, computation and
construction are yet to be combined. Biological systems
are adaptable and evolved to respond to changeable
environmental conditions — while computation is done in
silico. Therefore, the key challenge in building science
(and other types of manufacturing research) is to mimic
this aspect of biological systems, and perhaps even
directly integrate those systems in design and manufac-
ture. This approach may enable to embed computational
design in vivo in the material itself.
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Biofilms

One biological system that might be of key importance in
future development of architecture is the bacterial biofilm.
The term biofilm refers to complex heterogeneous struc-
tures comprising different populations of microorganisms
that attach and form a community on an inert (e.g. rocks,
glass, plastic) or organic (e.g. skin, cuticle, mucosa) sur-
faces (Kolter and Greenberg, 2006). The properties of the
surface, such as charge, hydrophobicity and roughness,
determine initial bacterial attachment (Palmer et al.,
2007). A common principle of all biofilms is the production
of extracellular matrix (ECM) composed of different
organic substances, such as extracellular proteins,
exopolysaccharides and nucleic acids (Branda et al.,
2005). While the ability to generate ECM appears to be a
common feature of multicellular bacterial communities,
the means by which these matrices are constructed and
function are diverse (Branda et al., 2005; Steinberg and
Kolodkin-Gal, 2015; Dragos and Kovacs, 2017).

Biofilms offer bacteria several ecological and physio-
logical advantages. They constitute a physical barrier
against host defences during infection and protect bacte-
ria from antimicrobial agents (such as disinfectants and
antibiotics) by reducing diffusion of those toxic com-
pounds (Landry et al., 2006). The biofiim structure and
the composition of the ECM (that consists of up to 97%
water) protect cells from desiccation (Branda et al.,
2005; Steinberg and Kolodkin-Gal, 2015). The ECM
mediates surface adhesion, cell to cell communication
and self-organization within the biofilm (Kolodkin-Gal
et al., 2013; Zhao et al, 2013), as well as structural
integrity (Chu et al., 2006) and nutrient acquisition (Dra-
gos and Kovacs, 2017).

Biofilm components can serve as important tools in
biotechnology. Some ECM compounds may be used in
cosmetics, food and pharmaceutical industries (Stanley-
Wall and MacPhee, 2015; Berlanga and Guerrero,
2016). In addition to being a source of proteins with
novel functions, biofiims can be produce chemicals by
fermentation (ethanol, butanol, lactic acid, and succinic
acid), in wastewater treatment and in bioremediation. In
industrial applications, such as biofilm reactors, microbial
cells are fixed on different supports by entrapment, cova-
lent bond formation or adsorption. The later approach
takes advantage of the natural ability of bacterial cells to
adhere to a support (such as charcoal, resin, vermiculite,
sand particles and polypropylene; Berlanga and Guer-
rero, 2016).

In this study, we will discuss another unique feature of
bacterial biofilms — template driven biomineralization;
and its potential application in sustainable architecture
and bioconstruction.

Bacteria-associated precipitation of calcium
carbonate

Organic extracellular matrix production has been exten-
sively studied as a means of cell-cell and cell-substrate
adhesion (Branda et al., 2001, 2005; Kolter and Green-
berg, 2006). Recently, we and others determined that
precipitation of calcium carbonate contributes to the
assembly of complex biofilm architecture (Li et al.,
2016a,b,c; Oppenheimer-Shaanan et al., 2016).

Bacterial biomineralization is a well-established phe-
nomenon. For example, Sporosarcina pasteurii and
Bacillus megaterium were shown to promote calcium
carbonate precipitation (Dupraz, 2009). While calcium is
available from the environment, bicarbonate is actively
produced by CO, hydration (CO, + H,O <> HCOj3 + HY),
where the source of CO, can be a byproduct of bacterial
metabolism or of the immediate environment (Dupraz
et al., 2009; Perito and Mastromei, 2011; Dhami et al.,
2013). The capacity of bacterial mats to sequester CO,
actively during biomineralization is of special importance.
The concentration of CO, in the atmosphere is con-
stantly rising, with the global annual mean increasing
markedly from 280 to 400 ppm as of 2015 (Jain et al.,
2016). While not toxic, CO, contributes to the green-
house effect, and therefore to global warming — inducing
unprecedented environmental changes (Memmott et al.,
2007; Socolow and Lam, 2007; Lidbury et al., 2012). A
continuous increase in near-surface atmospheric temper-
ature is often reported, and the additional energy stored
in the climate system contributes to ocean warming.
Taking urgent steps to combat climate change is one of
the goals of the Agenda for Sustainable Development,
highlighted in Goal 13: Climate Action.

Bacterially induced calcium carbonate precipitation
has been proposed as an environmentally friendly
method to protect decayed ornamental stone. The
method relies on the bacterially induced formation of a
calcium carbonate precipitate on limestone. The carbon-
ate cement promoted by bacteria appears to be highly
coherent (Vahabi et al., 2015), and this technique has
been explored for the improvement of the durability of
cementitious materials (Park et al., 2012). Calcium car-
bonate bio-deposition technologies have been used for
consolidation of sand columns (Nemati and Voordouw,
2003) and for repair and remediation of cracks in con-
crete (Pinar et al., 2010; Wang et al., 2017).

Importantly, our recent observations suggest that the
shape and the growth of calcium carbonate crystals
within bacterial communities can be predicted and
manipulated (Oppenheimer-Shaanan et al., 2016), a
function critical for novel applications in the construction
industry.
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Controlling the shape of the crystalline calcium
carbonate using ECM templates

Growth of calcite crystals occurs in layers (Wang et al.,
1997). The relative growth rates in the various axes may
alter crystal shape and morphology and may be influ-
enced by the biogenic (organic) environment (Weiner
and Addadi, 1991), and by organic polymeric substances
(McConn and Nakata, 2002). For many biofilm producing
bacteria, the identity of the exopolymeric substances and
the genes that encode them are resolved. It is known
that ECM absorbs Ca®* and promotes calcium carbonate
formation by providing nucleation sites (Dupraz et al.,
2009; Obst et al., 2009). However, the exact extra poly-
meric substances critical for biomineralization and crystal
structure remain to be determined. Recently, following
our finding that a defect in biomineralization leads to a
flaw in colony morphology in Bacillus subtilis, we tested
whether mineral absorption and assembly are related to
the ECM components secreted during biofilm formation
(Branda et al., 2005). The genetically manipulable Bacil-
lus subtilis forms a well-defined matrix during biofilm
assembly (Mielich-Suss and Lopez, 2015), and there-
fore, the effect of distinct ECM components on the grow-
ing mineral can be studied. The effect of the matrix
templates was evaluated by comparing the morphology
of calcium carbonate crystals at the following mutants:
the ftasA mutant, impaired in production of secreted amy-
loids (Romero and Kolter, 2014; Bucher et al., 2015), the
eps and ywqC-F mutants, impaired in different
exopolysaccharides synthesis pathways (Mijakovic et al.,
20083; Branda et al., 2004) and a double eps and ywqC-
F mutant. Calcium carbonate assembly and localization
within the wrinkles was significantly compromised in all
matrix mutants, consistent with the concept of mineral
growth aided by nucleation sites provided by the matrix.
None of the mutations had any effect on planktonic
growth (Oppenheimer-Shaanan et al., 2016). The analy-
sis of crystal morphology in the different matrix mutants
showed that interactions between the macromolecules
and the mineral phase can affect the growth of calcium
carbonate crystals. Environment Scanning Electron
Microscopy (ESEM) revealed that, in all backgrounds,
crystals contained rod-shaped pores consistent with the
size of the bacteria. Examination of the crystals gener-
ated by the wild-type strain revealed both rough crystal
faces and smooth flat crystal faces, demonstrating the
direct consequence of the spontaneous atomic organiza-
tion. The crystals formed in the wild-type strain displayed
elongated prismatic morphology instead of the rhombo-
hedral morphology, the most common form of calcite (de
Leeuw and Parker, 1998). Crystals formed by mutants
for tasA amyloids and eps exopolysaccharides were
significantly longer. Interestingly, the ywgC-F mutant,
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defective in secretion of acidic exopolysaccharides, pro-
duced calcite of strikingly clear rhombohedral morphol-
ogy (Gilbert et al., 2011), as it had only one plane of
symmetry through four vertices, and six smooth rhombic
faces. Therefore, in the absence of this exopolysaccha-
rides template, the interference of the organic matter
with the crystal growth was minimal. Thus, we demon-
strated that the secreted organic matter interferes with
crystal growth. The crystals were growing in the C axis,
and the organic matter mainly interfered with growth of
the crystals towards this axis. The levels of interference
were evaluated according to the elongation pattern of
the crystal, that is, if the extensions are thinner, then the
inhibition is higher.

The interaction between ECM components and min-
eral crystals was further assessed and confirmed by
Fourier transform infrared (FTIR) analysis of the crystals
(Oppenheimer-Shaanan et al, 2016). These results
strongly indicate that using artificial overexpression con-
structs for exopolysaccharides or amyloids, as well as
mutant strains placed at critical locations, is likely to gen-
erate differential calcium carbonate-based materials (For
an illustration see Fig. 1). Furthermore, they provide a
proof of concept for controlling the end product of bacte-
rial construction by providing appropriate ECM mutants
for each structural element.

The effect of ECM-based nucleation on crystal assem-
bly is probably a general feature of biofilm mats. Impor-
tantly, the shape of the calcium carbonate crystals varies
between different species, such as Mycobacterium smeg-
matis that produces fatty-acids based ECM (Purdy et al.,
2013; Oppenheimer-Shaanan et al.,, 2016), and Pseu-
domonas species containing various polysaccharides in
their matrix (Harmsen et al., 2010). All these soil bacteria
are genetically manipulable and provide a flexible tool-box
for future engineers and architects. In theory, the desired
calcium carbonate element to be used in bio-cement or
building foundations can be produced by designing the
composition of the bacterial communities.

Improving construction by coupling calcium
carbonate production with shear stress

The role of the foundation of a building is to bear and
transfer the building load. The ultimate load which a
foundation can support may be calculated using bearing
weight capacity. For preliminary design, presumed bear-
ing values can be used to indicate the pressures which
would normally result in an adequate factor of safety.
For example, the allowable bearing capacity (q.) is the
maximum bearing stress that can be applied to the foun-
dation, so it is safe against instability due to shear failure
and the maximum tolerable settlement is not exceeded.
The allowable bearing capacity is normally calculated
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Fig. 1. Model for biomineralization-mediated scaffolding of bacterial biofiims. A directed growth of the calcium carbonate crystals allows
mechanical support of the 3D structure. The bacterial extracellular matrix (brown) promotes the crystals’ growth in specific directions. This figure

was modified from Figure S14 in (Oppenheimer-Shaanan et al., 2016).

from the ultimate bearing capacity using a factor of
safety (Fs).

Our vision is to construct bacterial-based foundations
that respond to the changing load of the structure by
producing calcium carbonate to cement soils and to con-
trol the morphology of crystals so the materials are func-
tionally graded.

Biomineralization is already implicated in large-scale
geotechnical processes. A build-up of biofilms can have
a substantial impact on the geotechnical characteristics
of soils — leading to greater adhesion of sediment parti-
cles and strengthening the soils against load. By har-
nessing these processes, it is possible to begin to
develop materials relevant for large-scale building and
construction. Bacterially induced calcium carbonate pre-
cipitation has already been used to produce ‘self-healing’
concrete. Bacillus megaterium spores and suitable dried
nutrients are mixed and applied to steel-reinforced con-
crete. When the concrete cracks, water ingress dissolves
the nutrients and the bacteria germinate triggering cal-
cium carbonate precipitation, resealing the crack and
protecting the steel reinforcement from corrosion (Jon-
kers, 2007). This process can also be used to manufac-
ture new hard materials, such as bio-cement (Dosier,
2011).

Currently, the full potential of bacteria-driven biominer-
alization is far from being realized, as it is used as a
passive filling rather than as a smart designable mate-
rial. The ultimate goal is to develop ways to control the
timing and the location of mineral formation, as well as
the physical properties of the mineral itself, by environ-
mental input.

Interestingly, Bacillus subtilis has already been shown
to respond to its environment, by changing the

production of the ECM. It uses the polymers produced
by single cells during biofilm formation as a physical cue
to coordinate ECM production by the bacterial commu-
nity (Rubinstein et al., 2012; Chan et al., 2014). Con-
ceivably, the physical properties of matrix polymers are
also exploited for synchronizing development of biofilms.

Determining the bacterial response to physical stress
is crucial for predicting the behaviour of the future biofilm
foundations. Probing physical properties ordinarily
requires applying physical forces: to measure the
strength of a material, it needs to be stretched or
squeezed. In the case of biofilms, rheological assays
that involve measuring either local microscopic strength
of Bacillus subtilis biofiims formed around the force
probe of the rheometer, or probing the macroscopic
robustness of the developing pellicle over time under rel-
evant conditions (Rubinstein et al., 2012) can be used.
This approach is different and complementary to previ-
ously established assays in which large biofilms are first
grown and then transported to a rheometer for mechani-
cal testing (Jones et al., 2011), or alternatively are grown
within a confined microenvironment.

Additionally, using polymers as our osmotic agents or
mechanical modulators of the environment rather than
small molecules that are more commonly used (such as
salts and sugars), we can now identify alternative physi-
ological effects on gene expression well as distinguish
among various possible physical properties such as vis-
cosity, rigidity and ionic effects (Rubinstein et al., 2012).

The current challenge is identifying the relevant
mechanical receptors for load stress, and coupling the
production of calcium carbonate minerals to them.
Encouragingly, bacterial mechanoreceptors that regulate
gene expression, such as mechanosensitive channels
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serving to transport osmoticants (Martinac, 2001) and
the osmolality-sensing protein EnvZ (Wang et al., 2012),
are consistently exposed. Three independent enzymatic
pathways can be placed under mechanical receptors
and increase bacterial biomineralization:

(i)Urease. Biomineralization occurs preferentially in alka-
line pHs. Alkaline environments promote generation of
carbonate ions and negatively charge the functional
groups on the bacterial surface (Phoenix and Kon-
hauser, 2008; Dhami et al., 2013). Various bacteria
produce urea by the degradation of arginine and puri-
nes (Vogels and Van der Drift, 1976). Hydrolysis of
urea by urease is the most easily controlled mecha-
nism of microbial calcium carbonate precipitation, with
potential to produce high quantities of carbonates
within a short period of time: 1 mol of urea is intracel-
lularly hydrolyzed to eventually form bicarbonate,
1 mol of ammonium and hydroxide ions, which lead to
increased pH. Thus, coupling urease expression to
load stress is expected to promote biomineralization
locally at the stress source.

(i) Carbonic anhydrases. The enzymes that catalyze the
interconversions of carbon dioxide and water to bicar-
bonate and protons facilitate the formation of calcium
carbonate (Lotlikar et al., 2013; Muller et al., 2013).
This family of genes is wide spread in bacterial gen-
omes and can be put under mechanosensor control.

(i) ECM genes. As described above, different matrix
templates can provide nucleation sites and promote
crystal’s growth. Interestingly, many ECM genes are
already under the regulation of physical and mechani-
cal cues (Steinberg and Kolodkin-Gal, 2015).

Summary

In this study, we explore the potential use of bacteria-
induced biomineralization in architecture and construction.
Research of biomineralization promoted by bacterial bio-
films is of crucial importance, both as purely scientific
study of microbiology and as it promises biotechnology
significantly benefits in soil bio-mediation. Microbio-
logically induced calcite precipitation can be used to
enhance the shear strength of soil for environmental
remediation applications. Furthermore, applying beneficial
bacteria to the foundations of eco-friendly buildings and
bio-cement will result in carbon dioxide sequestration in
the form of a functional mineral. Thus, incorporating bacte-
rial biofilms that form calcium carbonate into our construc-
tion materials provides a sustainable solution for building
future cities, as well as for the critical issue of global warm-
ing — taking us one step closer to achieving the Sustain-
able Development Goals as defined in the 2030 Agenda
for Sustainable Development.
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The work described here represents an emerging
interdisciplinary field combining applied microbiology with
building science research. Several pioneering projects
have already proved the potential utility of microorgan-
isms in the production and maintenance of building
materials. The ultimate goal is to design new ‘intelligent’,
adaptable, energy-efficient materials, by integrating living
cells into building and architecture.

The roman architect Marcus Vitruvius Pollio suggested
that architecture is an imitation of nature. Biofiims formed
by soil bacteria evolved to deal with the challenges of
carbon dioxide emissions from cellular respiration, and
to self-renew following load stresses. Now it is time that
the natural solutions bacteria found are included in the
architectural ‘tool box’ of the future.
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