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DOTS: Delay-Optimal Task Scheduling among
Voluntary Nodes in Fog Networks
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Abstract—Through offloading the computing tasks of the task
nodes (TNs) to the fog nodes (FNs) located at the network
edge, the fog network is expected to address the unacceptable
processing delay and heavy link burden existed in current cloud-
based networks. Unlike most existing researches based on the
command-mode offloading and full capability report, this paper
develops a general analytical model of the task scheduling among
voluntary nodes (VNs) in fog networks, wherein the VNs volun-
tarily contribute their capabilities for serving their neighboring
TNs. A novel Delay-Optimal Task Scheduling (DOTS) algorithm
is proposed to obtain the delay-optimal offloading solution
according to the reported capabilities of the VNs. Extensive
simulations are carried out in a fog network, and the numerical
results indicate that the proposed DOTS algorithm can effectively
provide the optimal helper nodes (HNs) set, subtask sizes, and
TN transmission power to minimize the overall task processing
delay. Moreover, compared with the command-mode offloading,
the voluntary-mode achieves more balanced offloading and a
higher fairness level among the FNs.

Index Terms—Fog network, voluntary capability report, delay
minimization, fairness.

I. INTRODUCTION

W ITH THE development of Internet of Things (IoT)
technology, billions of resource-limited devices are

expected in future networks [2], [3], and most of them are
connected to the Internet [4], [5]. Due to the limited processing
capability at each single node, tasks of most terminal devices
need to be offloaded to achieve satisfactory delay performance
for emerging applications, such as autonomous vehicles, smart
home devices, e-healthcare, intelligent manufacturing, etc. In
traditional networks, those tasks are usually offloaded to the
cloud server, thus avoiding long processing delay and quick
energy consumption at local terminal devices with limited
capabilities [6]. Nevertheless, the explosive growth of 5G / IoT
applications and the corresponding mobile data will generate
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heavy burden to the cloud server and all wireless links, thus the
overall system performance will suffer dramatic degradation
[7], [8]. Even worse, the long distances between the cloud
server and different terminal devices cannot effectively support
the delay-sensitive tasks [9], [10]. Therefore, more flexible
and efficient task scheduling architectures and schemes are
required to optimize the end-to-end delay performance by
using fog-enabled task scheduling technology.

In fog-enabled systems, massive fog nodes (FNs) are dis-
tributed across the whole network [11], [12]. Aided by the
advanced technologies including software defined network
(SDN) and network function virtualization (NFV) [13], com-
munication, computing, relaying, caching, and control services
can be flexibly deployed on these ubiquitous FNs. The network
resources are extended from the central cloud to the FNs,
and this novel network structure provides a rich collection of
ubiquitous computing, communication, and storage resources
across the network [14]. The FNs holding varying capabilities
can be jointly scheduled to achieve better system performances
in delay, energy consumption, etc. Benefiting from the huge
amount and the flexible deployment of the FNs in a fog
network, the computing tasks generated at the task nodes
(TNs) can be divided into multiple subtasks and offloaded to
several nearby FNs rather than the remote cloud server. There-
fore, task scheduling services with better quality of service
(QoS) than traditional cloud computing can be provided by
the effective utilization of available capabilities and resources
in the neighborhood [11], [12], [14]. These heterogeneous
FNs are either specifically deployed by the network operators
or by autonomous clients with network-connected computing
devices, which could voluntarily contribute their available
resources for serving their neighboring TNs. However, the
following three key questions need to be addressed.

• Under what conditions will an FN contribute its available
capability and serve as a voluntary node (VN)?

• How does a VN determine how much capability it con-
tributes for the task scheduling service?

• How to determine the delay-optimal task scheduling
solution based on the capabilities contributed collectively
from the nearby VNs?

In order to provide better support for delay-sensitive ser-
vices in fog networks, extensive researches has been focused
on the delay performance under different fog computing
frameworks [15]–[20]. In [16], the delay-minimization prob-
lem is formulated as an integer optimization problem based
on a hierarchical architecture named Combined Fog-Cloud
(CFC). Fog computing is introduced as a complement to cloud
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computing and an essential ingredient of the IoT in [17].
Analytical model is introduced for service delay based on
queueing theory, and the delay-minimized policy is provided.
In [18], the optimization problem is decomposed into two
operations at the control tier and the access tier to respectively
determine the node assignments and bandwidth allocation,
and tradeoff is achieved between average network throughput
and service delay. The authors of [19] provided a dual focus
on the improvements of both the processing delay and the
transmission delay, which are addressed respectively by virtual
machine migration and transmission power control. A Fog-
Radio Access Network (F-RAN) architecture is introduced in
[20] by Shih et al. to guarantee the requirements of those
ultra low-latency applications, wherein the mobile augmented
reality (AR) service is taken as an example to illustrate the
designed framework. Taking both the delay performance and
the energy consumptions into consideration, many researchers
focus on the problem of delay-energy tradeoff in fog-enabled
systems [21]–[27]. The energy consumptions in the offloading
processes are minimized in single-user [21] and multiple-
user [22] scenarios respectively. Yang et al. [23] introduced
a control parameter to characterize the delay-energy tradeoff
during dynamic task scheduling processes in fog networks,
and they also provided an effective algorithm to minimize the
overall energy consumption while reducing average service
delay and delay jitter. The performance indexes including
task delay and energy consumption are abstracted to revenue
and cost in the operation process of the fog-enabled com-
puting network [24], [25], and game theories are adopted to
achieve the balance of payments. The energy efficiency of task
scheduling is maximized in [26], and the task is processed
within a fixed period. In [27], three queueing models are
adopted respectively for mobile terminal devices, the fog, and
the cloud centers. A multi-objective optimization problem is
formulated to minimize the energy consumption, execution
delay, and payment cost by finding the optimal offloading
probability and transmission power for each terminal device.

The existing task scheduling policies are almost all in the
command-mode. In other words, all the FNs and their idle
capabilities can be selflessly contributed to the TN to fulfill
the task scheduling service. However, quite a portion of the
FNs in real fog networks want to autonomously determine how
much capability they contribute to nearby TNs according to
their own current states. We call this more realistic scenario as
the voluntary-mode. Furthermore, the FNs may take part in the
offloading service in a totally economy-mode and contribute
their capabilities according to the price that the TN offers. The
voluntary-mode or economy-mode are to be the normalcy of
the future fog networks. On the one hand, these modes can
incent more network nodes to contribute more idle capabilities,
thus more flexible and high-quality services can be provided.
On the other hand, in a fog network under command-mode,
most of the tasks of the TN are offloaded to the FNs which
are close to the TN and possess high computing capabilities.
This will lead to the halts of some important FNs due to
the excessive consumption of energy, and thus some serious
system-level problems, which could be avoided by the self-
protection of the FNs in the voluntary-mode fog networks. To

this end, we keep a watchful eye on the scheduling of the
delay-sensitive tasks among the VNs in fog networks, and the
three key questions raised above are going to be investigated.

In particular, the main contributions of this paper are
summarized as follows.

• A general analytical model in a fog network under the
voluntary-mode is constructed. An FN that voluntarily
contributes its capability serves as a VN and otherwise a
non-voluntary node (N-VN), and the delay-sensitive TN
tasks can be offloaded to multiple selected VNs, named
helper nodes (HNs). A report ratio is introduced and
modeled for each FN to autonomously determine whether
it serves as a VN, and the computing capability that
the VN reports to the TN. The FNs with high historical
energy consumptions will decrease their report ratios and
thus report capabilities. Thus, the first two key questions
raised above are addressed.

• The minimization problem for overall task processing
delay of the task scheduling service among the VNs
is formulated, and a Delay-Optimal Task Scheduling
(DOTS) algorithm is proposed. The delay-optimal of-
floading solution is achieved by transforming the delay
minimization problem to the equivalent rate maximization
problem, and the optimal solution includes the set of the
HNs, subtask sizes, and the TN transmission power to
each HN. Thus, the third key question raised above is
addressed.

• The performance of the proposed algorithm is evalu-
ated through extensive simulations in a fog network.
Numerical results demonstrate that the DOTS algorithm
can effectively determine the optimal task scheduling
solution that minimizes the overall task processing delay.
Moreover, supported by the voluntary capability report,
balanced offloading and fair energy consumptions among
FNs are achieved by the proposed DOTS algorithm.

The rest of this paper is organized as follows: The task
scheduling model in a voluntary-mode fog network and the
corresponding problem formulation for the minimization of
task delay are provided in section II. In Section III, the
capability report ratio is introduced and modeled. Section IV
provides the DOTS algorithm. In Section V, we conduct the
simulations and performance analyses. Section VI concludes
this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the model of the task schedul-
ing service among VNs in a fog network, and the task delay
is formulated as the function of the offloading solution. A
fog network as shown in Fig. 1 is considered, which consists
of N FNs. Denote the FN set by F . The N heterogeneous
FNs have varying inherent characteristic parameters including
central processing unit (CPU) cycles for processing 1 bit data
denoted by ηi, the CPU frequency denoted by fi, the energy
consumption per CPU cycle denoted by θi, and etc. Each
FN uses a bandwidth W for the data transmission with other
network nodes. The key notations in this paper are provided
in Table. I.
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Fig. 1. Task scheduling service model among VNs in a fog network. An
FN serves as a VN or an N-VN according to whether the FN is voluntary to
contribute its capability to the TN. The VNs that are selected for the offloading
service are defined as HNs. Obviously we have H ⊆ V ⊆ F .

A. Task Scheduling among VNs

Once an l-bit delay-sensitive computing task is generated at
the TN, in addition to processing the task locally or calling for
cloud-assisted computing, the TN can call for task scheduling
service from the FNs in the fog network, and then the FNs will
report their information autonomously to the TN. According
to the known FN and task information, the offloading solution
is determined by the TN itself rather than a central controller.
Then, the task is divided into subtasks and transmitted to the
corresponding FNs for processing. Finally, processing results
are transmitted back from the FNs to the TN if necessary.
Through this kind of flexible fog-enabled task scheduling
service, idle resources around the TN are utilized to achieve
low task processing delay.

A report ratio τi is defined for each FN, which represents the
proportion of the computing capability reported by FN i with
respect to its total capability. The report ratio set is defined as
T = {τ1, τ2, · · · , τN}. The total computing capability of FN i
is fi

ηi
(in bit/s), and the capability reported to the TN is

ci = τi
fi
ηi
. (1)

The report ratio satisfies 0 ≤ τi ≤ 1. If the report ratio of
an FN is larger than 0, this FN is voluntary to contribute
its capability for the task scheduling service, and it serves
as a VN. Otherwise, the FN will not participate in the task
scheduling service, and then it serves as an N-VN to the TN.
The set of the VNs is defined as V , which is a subset of F
and contains the V FNs that report non-zero capabilities to
the TN. It is worth mentioning that the VN set V may be

TABLE I
SUMMARY OF KEY NOTATIONS

Nota. Unit Description

l bit Overall task size of the TN.

pmax W Upper bound of the transmission power of
the TN.

pi W Transmission power of the TN to FN i.
lT bit Subtask size processed locally at the TN.
li bit Subtask size offloaded to FN i.

ηT cycle/bit CPU cycles for processing 1 bit data at the
TN.

ηi cycle/bit CPU cycles for processing 1 bit data at FN
i.

fT cycle/s CPU frequency of the TN.
fi cycle/s CPU frequency of FN i.
θi J/cycle Energy consumption per CPU cycle of FN i.
W Hz Spectrum bandwidth for task offloading.
γi − Path loss factor between the TN and FN i.
βi − Shadowing factor between the TN and FN i.
τi − Capability report ratio of FN i.

κi − Regulatory factor of the report ratio of FN
i.

Ei J Energy consumption of FN i in the offload-
ing service of a task.

Ēi J Historical average energy consumption of
FN i.

ω −
Forgetting factor in the updating formula of
the historical average FN energy consump-
tion.

Ēi,max J Threshold for the historical average energy
consumption of FN i.

time-varying according to the states of the FNs.
The VNs that are selected by the TN for task offloading

are defined as HNs. Obviously, the sizes of the subtasks
corresponding to the unselected VNs equal 0. Thus, the HN set
H is a subset of V , and it contains the VNs which are assigned
subtasks with nonzero size. Therefore, we have H ⊆ V ⊆ F .

B. Task Delay

According to the offloading process described above, the
task delay includes V +1 parts. Specifically, they are the local
processing delay of the subtask with lT bits, and the delays
of the subtasks (some of the subtasks may be 0) offloaded
to the V VNs, which are denoted by dT and di(i ∈ V),
respectively. In most fog network applications like image
recognition, automatic control, and etc, the TN can make next-
step decision only if the processing results of all the subtasks
are received. Thus, the overall task delay is defined as the
maximum value of all the subtask delays, i.e.

d = max (dT, d1, d2, · · · , dV ) . (2)

For the VN, say VN j, that is not selected as an HN for
the offloading service, there is lj = 0, and we define dj =
min(di), i ∈ H for the sake of the later derivation. Thus, the
definition of d in formula (2) still holds.

Following the models in [9], [26], the lT-bit subtask pro-
cessed locally at the TN requires lTηT CPU cycles to be
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computed, thus the local processing delay is expressed as

dT =
lTηT

fT
. (3)

For the VN, say VN i, that is selected for the offloading
service, the subtask size li is larger than 0, and the li-bit
subtask requires liηi CPU cycles to be computed. This subtask
needs to be transmitted to and processed at VN i, and the
processing result is then transmitted back to the TN. In most
cases, the processing result is a small packet such as a control
signal [9]. Similar to the existing researches in [9], [28], [29],
the transmission time of the processing result is neglected.
Then, the offloading delay di is the sum of the transmission
time and the processing time of the li-bit subtask, and it is
expressed as

di =
li

WBi
+
li
ci

= li

(
1

WBi
+

ηi
τifi

)
, (4)

where Bi is the spectral efficiency of the wireless link from
the TN to VN i. Given the TN transmission power pi, Bi is
obtained through Shannon capacity as

Bi = log2

(
1 +

piγiβi
Ii +Wn0

)
, (5)

where γi and βi are the path loss and shadowing factors of
this wireless link. In addition, Ii and n0 are the interference
power and the noise power spectral density respectively.

C. Problem Formulation

Taking the fact that l = lT +
∑V
i=1 li into consideration, the

overall task processing delay in (2) can be rewritten as

d=max
i∈V


(
l−
∑N
i=1 li

)
ηT

fT
, li

 1

W log2

(
1+ piγiβi

Ii+Wn0

)+ ηi
τifi

.
(6)

It can be observed that the overall task delay d is directly
determined by the subtask size li and the transmission power
pi. Under the constraint for the overall transmission power of
the TN, li and pi need to be properly assigned thus the overall
task processing delay is minimized. Now, the delay-optimal
task scheduling problem is formulated as

P1 : min
L,P

d

s.t. 0 ≤ li ≤ l,

0 ≤ pi ≤ pmax,
V∑
i=1

pi ≤ pmax, (7)

where pmax is the upper bound of the overall transmission
power of the TN. The sets L and P represent the sub-
task size set {l1, l2, · · · , lV } and TN transmission power set
{p1, p2, · · · , pV } respectively.

Remark: According to the traffic load, energy consumption,
etc., the capability report ratio τi in T is determined by the
corresponding FN in a distributed and autonomous manner.
Thus, the computing capability of FN i is τi

fi
ηi

from the

perspective of the TN. The report ratio τi > 0 means that
the corresponding FN is available for task scheduling service
at present and serves as a VN. Given the reported capabilities
of all the VNs, the optimal offloading solution (L∗,P∗) that
minimizes the task delay d is obtained at the TN by solving
P1. The optimal HN set is H∗ = {VN i ∈ V|l∗i > 0}. The
VNs with l∗i = 0 and p∗i = 0 are not selected as HNs for
the delay-optimal task scheduling service, which may result
from the low reported capabilities or the poor channel states
of these unselected VNs.

In the next section, the capability report ratio of the FNs in
the voluntary-mode fog networks is detailedly discussed and
modeled.

III. CAPABILITY REPORT RATIO

The TN selects the HNs and offloads subtasks to the HNs
according to the computing capability voluntarily reported
by each FN. In this section, the capability report ratio is
modeled, taking the historical energy consumption of the FN
into consideration. Thus, a balanced offloading among the FNs
can be achieved in the voluntary-mode fog networks.

A. Historical Energy Consumption

The FNs report their computing capabilities according to
their historical energy consumptions. Therefore, we first in-
troduce the update formula for the historical average energy
consumption of FN i as

Ēi
′
= (1− ω) Ēi + ωEi, (8)

which is inspired by the proportional fair scheduling policy
for the radio resource allocation [30], [31]. The parameter ω
is the forgetting factor with a positive value less than 1. Ei
is the energy consumption of FN i in the offloading service
process of the TN task, and it is expressed as

Ei = liηiθi, (9)

where θi is the energy consumption per CPU cycle of FN i.
The energy consumption for the transmission of processing
result is neglected like what we did in the formulation of task
processing delay.

The historical energy consumption Ēi reflects the energy
consumption level of FN i in the past period. The FN with a
higher historical energy consumption is able to autonomously
reduce the capability reported to the TN, such that lighter load
is assigned to this FN afterwards. Thus, balanced offloading
and fair energy consumptions could be achieved among the
FNs in the voluntary-mode fog networks.
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B. Report Ratio Modeling

Based on the analyses above, the capability report ratio of
FN i is modeled as the following function.

τi = f
(
Ēi, Ēi,max, κi

)
=


1, Ēi<κiĒi,max,

1

1− κi

(
1− Ēi

Ēi,max

)
, κiĒi,max≤Ēi≤ Ēi,max,

0, Ēi>Ēi,max.

(10)

In formula (10), Ēi,max is the threshold of the historical energy
consumption of FN i. If Ēi is lower than the threshold, the
report ratio τi of FN i is positive, which means that this FN
is voluntary to contribute its capability and serves as a VN.
The parameter κi with a positive value no larger than 1 is
the regulatory factor of the report ratio. An illustration of the
modeling for the report ratio is presented in Fig. 2.
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κiĒi,max Ēi,max
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Fig. 2. Report ratio model of FN i.

As illustrated in Fig. 2 and formula (10), the report ratio τi
is 1 when Ēi ≤ κiĒi,max, and all the computing capability is
voluntarily reported to the TN that requires service. When Ēi
becomes larger than κiĒi,max, the report ratio becomes smaller
than 1, which means FN i only reports part of its computing
capability, i.e. τi fiηi , to the TN. It is equivalent to decreasing
the CPU frequency of FN i to τifi. When Ēi becomes larger
than the threshold Ēi,max, a zero capability will be reported
to the TN. FN i will not participate in the offloading service
as the result of its high historical energy consumption. Thus,
the historical average energy consumptions of the FNs are
restricted by their thresholds of energy consumption, and a
balanced offloading can be achieved with this capability report
model. As shown in Fig. 2, when the regulatory factor κi
equals 1, the corresponding FN will either report all of its
capability or none of its capability to the TN.

With the report ratio, an FN in the fog networks serves as
either a VN or an N-VN according to its historical energy
consumption. Besides, the threshold Ēi,max and the regulatory

factor κi is determined by the characteristics of the corre-
sponding FN. Therefore, the reported capabilities are deter-
mined by the FNs in a distributed and autonomous manner.
Small Ēi,max and κi indicate that the corresponding FN is
sensitive to energy consumption. Obviously, if the thresholds
of all the FNs are +∞, all the computing capabilities of the
FNs will be selflessly reported to the TN to fulfill the task
offloading service, and the system will be in command-mode
without without concerning the balanced offloading among the
FNs.

Through the autonomous contribution of computing capa-
bility, this voluntary-mode task scheduling guarantees that the
energy consumptions of individual FNs are not too large, and
thus the balanced offloading is achieved. We adopt the Jain’s
fairness index [32] to numerically evaluate the fairness level
of the energy consumptions among all the N FNs, and the
fairness index is formulated as

F =

(∑
i∈F Ēi

)2
N ·

∑
i∈F Ēi

2 . (11)

The Jain’s fairness index F ranges from 1/N to 1, and a
higher F indicates a higher fairness level of the task scheduling
scheme. The fairness index achieves the maximum value when
all the FNs have equal historical energy consumptions.

We concentrate on the balanced offloading in the voluntary-
mode fog networks in this paper, thus the report ratio is
determined by the historical energy consumption of the cor-
responding FN. In the economic-mode fog networks, the TNs
will provide the FNs with rewards as an incentive, by which
the report ratios of the FNs are further determined.

In the next section, we are going to provide the delay-
optimal task scheduling solution (L∗,P∗) with the voluntary
capability report in fog networks.

IV. DELAY-OPTIMAL TASK SCHEDULING

In this section, the optimization problem P1 is transformed
into a one-variable form problem with respect to the terminal
transmission power P . Then, the Delay-Optimal Task Schedul-
ing (DOTS) algorithm is proposed for the TN to obtain the
solution of the delay-optimal problem.

A. Problem Transformation

As defined in formula (2), the overall task processing delay
is determined by the maximum delay of all the V +1 subtasks.
Then, we have the following proposition for the relationship
between the overall task delay and the subtasks’ delays.

Proposition 1. When the overall task processing delay d is
minimized, all the subtasks’ delays are equal. In other words,
we have

d∗ = d∗T = d∗1 = d∗2 = · · · = d∗V . (12)

Proof. Please refer to Appendix A.

The conclusion in Proposition 1 can be intuitively explained
as follows. If the subtasks’ delays are not all equal, a lower
overall task processing delay can always be achieved by
adjusting the subtask sizes allocated to the network nodes.
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Correlation between L and P is introduced by the conclu-
sion in Proposition 1. Thus, the optimization problem P1 can
be transformed into a one-variable form problem provided in
the following proposition.

Proposition 2. The optimization problem P1 is equivalent to
the optimization problem with respect to the TN transmission
power P , which is formulated as

P2 : max
P

K =
V∑
i=1

 1

W log2

(
1+ piγiβi

Ii+Wn0

)+ ηi
τifi

−1

+
fT

ηT

s.t. 0 ≤ pi ≤ pmax,
V∑
i=1

pi ≤ pmax. (13)

Proof. Please refer to Appendix B.

Remark: From Appendix B, there is l = d ·K. The objective
function K in P2 is the equivalent processing rate of the
offloading service based on the V VNs, which involves both
the computing rates and the transmission rates. The overall
task delay d is minimized when the maximum equivalent task
processing rate K is achieved. Therefore, the delay mini-
mization problem P1 is transformed into a rate maximization
problem P2 with respect to P .

Moreover, it can be found from (13) that the maximization
of K is independent of the overall task size l. Therefore, the
minimized task processing delay d∗ holds a proportionable
relationship with the TN task size l, i.e. d∗ = 1

K∗ · l, when the
VN set V is fixed.

B. Optimal Offloading Solution

In this subsection, we propose the optimal TN transmission
power P∗ to maximize the equivalent task processing rate K in
P2. Then, the optimal offloading solution (L∗,P∗) is provided
to minimize the overall task processing delay.

Firstly, the convexity of K with respect to P is confirmed
by the following proposition.

Proposition 3. The equivalent processing rate of the offload-
ing service, i.e. K in P2, is convex when pi ≥ 0, i ∈ V .

Proof. Please refer to Appendix C.

Thus, the maximized objective function, i.e. K∗, can be
obtained through convex optimization, which directly provides
the minimized task processing delay as l

K∗ . Then, we have
the following theorem for the delay-optimal task scheduling
solution (L∗,P∗).

Theorem 1. The optimal TN transmission power P∗ that
minimizes the overall task processing delay d satisfies the

following conditions.

p∗i =



0,
∂K

∂pi

∣∣∣
pi=0

≤ α

p̄i,
∂K

∂pi

∣∣∣
pi=p̄i

= α

pmax,
∂K

∂pi

∣∣∣
pi=pmax

≥ α

(14)

N∑
i=1

pi = pmax. (15)

In the above equations, α is a positive optimization parameter
which is equal for all V VNs. ∂K

∂pi
is the first derivative of K

with respect to pi, and it is expressed as

∂K

∂pi
=W

[
1 +W

ηi
τifi

log2

(
1+

piγiβi
Ii +Wn0

)]−2

· γiβi
(Ii +Wn0 + piγiβi) ln 2

. (16)

The optimal subtask size L∗ that minimizes the overall task
delay is

L∗ =

 l

K|P∗

 1

W log2

(
1+

p∗i γiβi

Ii+Wn0

)+ ηi
τifi

−1

, i ∈ V

 .

(17)

Proof. Please refer to Appendix D.

Remark: The conclusions in Theorem 1 can be intuitionally
explained as follows. Firstly, the processing rate K increases
with the increasing of the transmission power pi, i ∈ V .
Thus, the condition shown in (15) must be satisfied when
K is maximized. Secondly, the gradient ∂K

∂pi
represents the

increasing rate of K with respect to pi, which is related
to the computing capability and the channel state of the
corresponding VN. The gradients ∂K

∂pi
, (i ∈ V) should be equal

when K is maximized. Otherwise, P can always be adjusted
to obtain a larger K. Thirdly, due to the constraint for TN
transmission power, i.e. pmax, the VN with very poor channel
state or low computing capability may hold a very low ∂K

∂pi
and not be selected as an HN for the task scheduling service.
On the contrary, the VN with very good channel state or
high computing capability may hold a very high ∂K

∂pi
and be

assigned all transmission power pmax.

C. DOTS Algorithm

Based on the conclusions in Theorem 1, the DOTS algo-
rithm is proposed in Algorithm 1.
Remark: In Algorithm 1, we adopt iterative method to obtain
the optimal TN transmission power P∗ provided in Theorem 1.
A precision ε and an initial step size ∆p are initialized. In
addition, the initial transmission power to all V VNs are set
to be equal, i.e. pmax

V . Iterations are carried out to approach
the optimal solution provided in Theorem 1. The step size
could be set larger at the beginning, and be reduced in the
process of iterations. Thus, a faster convergence of P could
be achieved. The optimal subtask size L∗ could be obtained
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Algorithm 1 DOTS Algorithm
1: Initialize Ēi, Ēi,max, κi (i ∈ F), ω, ∆p, ε;
2: while A TN task is generated do
3: Acquire the report ratio set T with formula (10);
4: Update the VN set V = {FN i ∈ F|τi > 0};
5: Initialize P =

{
pmax
V , pmax

V , · · · , pmax
V

}
;

6: Calculate ∂K
∂P =

{
∂K
∂p1

, ∂K∂p2 , · · · ,
∂K
∂pV

}
;

7: s1 = std
{
∂K
∂P |pi ̸= 0

}
;

8: while s1 > ε do
9: Ptemp = P;

10: Find i = argmin
{
∂K
∂P |pi ̸= 0

}
;

11: pi = max(pi −∆p, 0);
12: Find j = argmax

{
∂K
∂P
}

;
13: pj = min(pj +∆p, pmax);
14: Update the gradient ∂K

∂P ;
15: s2 = std

{
∂K
∂P |pi ̸= 0

}
;

16: if s2 > s1 then
17: Reduce the step size as ∆p = ∆p

2 ;
18: P = Ptemp;
19: Update the gradient ∂K

∂P ;
20: else
21: s1 = s2;
22: end if
23: end while
24: return Optimal TN transmission power P∗ = P;
25: Optimal subtask sizes L∗ calculated by (17);
26: Optimal HN set H∗ = {VN i ∈ V|l∗i > 0};
27: Update the historical energy consumption for each FN

with formula (8);
28: end while

through formula (17) in Theorem 1. The optimal HN set H∗

contains the selected VNs, i.e. the VNs with optimal subtask
sizes larger than 0.

V. NUMERICAL EVALUATIONS

In this section, simulations are carried out to investigate
the performance of the proposed DOTS algorithm. The mini-
mized task processing delay is evaluated in various scenarios.
Besides, the FN energy consumptions and the fairness level
among the FNs are also investigated.

A. Simulation Setting

A voluntary-mode fog network consisting of N FNs is
considered for the numerical evaluations, and the FNs are
randomly distributed in the fog cluster. The TN in this fog
network calls for and receives offloading services from the
VNs based on their voluntarily reported computing capabil-
ities. The transmission bandwidth for each FN is 10 MHz.
The interference power Ii, the noise power density n0, and
the shadowing factor βi are −47 dBm, −173 dBm/Hz, and -5
dB, respectively. In addition, the path loss factor γi (in dB)
is calculated by 38.46+20 log10(Di), where Di (in m) is the

TABLE II
SIMULATION PARAMETERS

Parameter Value
The radius of the fog cluster 10− 90 m

W 10 MHz
N 10− 100

l [4, 6, 8] MBytes
pmax [0.5, 1] W
ηT 1000 cycle/bit
ηi 500− 1500 cycle/bit
fT 2 GHz (cycle/s)
fi 1− 10 GHz (cycle/s)
θi [1− 10]× 10−10 J/cycle
κi 0− 1

Ēi,max [0.5−∞) J
ω 0.01

distance between the TN and FN i. All parameter settings are
provided in Table. II.

B. Minimized Task Delay

Given the reported computing capabilities in the fog cluster,
the optimal offloading solution that minimizes the overall task
processing delay is obtained by the proposed DOTS algorithm.

In Fig. 3, the minimized task processing delay, i.e. d∗, is
provided with different task sizes l and transmission power
bounds pmax. In Fig. 3a, the change of the minimized task
delay over the total FN amount in the fog cluster is plotted,
wherein the radius of the fog cluster is 50 m. With the
increasing of the total FN amount, the amount of the VNs
that are close to the TN and report high computing capability
increases, which brings an increasing task processing rate K
and thus a decreasing task processing delay d. Besides, the
higher upper bound for TN transmission power also leads to
lower task processing delays by increasing the transmission
rate in K. In addition, it can also be observed from the
results in this figure that the decreasing rate of the task
delay becomes smaller and smaller with the increasing of
the total FN amount. This is because that the resources in
the fog cluster that the TN can utilize are limited by its
transmission power, and the TN can only makes use of finite
VNs for the offloading of its computing tasks. In other words,
the offloading processes of the delay-sensitive TN tasks are
transmission power-constrained when the total FN amount is
large. In Fig. 3b, the change of the minimized task delay over
the radius of the fog cluster is plotted, wherein the total FN
amount in the cluster is 50. With the increasing of the radius
of the fog cluster, the amount of VNs that are close to the TN
and report high computing capability decreases, which brings
a decreasing task processing rate K and thus an increasing
task processing delay d. In addition, it can be observed that the
increasing of the task delay is nearly linear with the increasing
of the cluster radius, which also indicates that the resources
that the TN can utilize with limited transmission power are
proportional with the radius of the fog cluster.
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(b) The overall task delay versus the radius of the fog cluster.

Fig. 3. The minimized overall task processing delay under different task sizes
and transmission power bounds.

Moreover, a nearly proportional relationship between the
minimized task delay and the task size is found from the
results in Fig. 3. This has been explained in the remark of
Proposition 1, and the deviations come from the varying of
the VN set. The minimization of the task delay is equivalent
to the maximization of the total processing rate K, and the
equivalent total processing rate K is independent of the task
size l. In other words, the tasks with different sizes have the
equal maximal processing rate. Therefore, the minimized delay
d∗ = 1

K∗ · l is linear with the task size l.
In Fig. 4, the change of the average task processing delay

over the threshold for FN energy consumption is plotted,
wherein the regulatory factor is 0.5 for each FN. With the
increasing of the threshold, the VNs report more capabilities,
which brings a decreasing average task processing delay. Be-
sides, the task processing delay is almost unchanged when the
thresholds are large enough, which results from two reasons.

Threshold of the historical energy consumption (J)
0.5 1 1.5 2 2.5 3

T
as

k 
pr

oc
es

si
ng

 d
el

ay
 (

s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

l = 8Mbytes, p
max

 = 0.5W

l = 8Mbytes, p
max

 = 1W

l = 4Mbytes, p
max

 = 0.5W

l = 4Mbytes, p
max

 = 1W

Fig. 4. The average task processing delay versus the threshold for FN energy
consumption.

Firstly, when the thresholds are large, the resources that the
TN can utilize is not limited by the reported capabilities of
the nearby VNs, but the upper bound of the TN transmission
power. Secondly, when the thresholds are large enough, all
FNs in the fog network report all their computing capabilities
to the TN, and the offloading services are in command-mode.
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Fig. 5. The amount of the HNs versus the amount of the FNs.

In the optimal offloading solution (L∗,P∗), the subtask size
l∗i may be zero which means VN i is not selected as an HN.
In Fig. 5, the amount of the HNs is provided with varying
total FN amount and cluster radius, wherein the task size
l = 6 MBytes and the upper bound for TN transmission power
pmax = 1 W. It can be observed that the amount of the selected
FNs increases with the increasing of the total FN amount and
the decreasing of the fog cluster radius, and the increasing rate
becomes smaller when the total FN amount becomes larger.
Taking the results in Fig. 3 and Fig. 5 into consideration,
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Fig. 6. The historical FN energy consumption versus the threshold for FN
energy consumption.

we can conclude that the appropriate amount of FNs and a
small distribution range are advantageous for the offloading
of the delay-sensitive TN tasks. Overmany deployed FNs can
not dramatically reduce the task processing delay due to the
limited TN transmission power, but result in a high networking
overhead.

C. Fairness Index

For a series of TN tasks, the voluntary capability report
supported by the distributed report ratio guarantees that the
energy consumptions of the FNs are not too high to end their
lifecycles quickly. In Fig. 6, the historical average energy
consumption of an FN is plotted under different threshold
Ei,max and regulatory factor κi, wherein the task size is 6
Mbytes. It can be observed from the results that when the
regulatory factor is smaller than 1, the historical FN energy
consumption can always be effectively kept lower than the
threshold, and the historical energy consumption will break
the threshold when κi = 1. Therefore, a positive regulatory
factor smaller than 1 is preferred in our capability report ratio
model, and the transition zone of the report ratio (κi = 0.5)
shown in Fig. 2 is necessary.

The Jain’s fairness indexes F of the FN energy consumption
under different thresholds for FN energy consumption are
plotted in Fig. 7, wherein the task size is 6 Mbytes and the
TN transmission power bound is 1 W. Besides, the regulatory
factor κ is set to be 0.5. In Fig. 7a, the changes of the Jain’s
fairness index over the total amount of the FNs are plotted,
wherein the cluster radius is 50 m. In Fig. 7b, the changes of
the Jain’s fairness index over the radius of the fog cluster are
plotted, wherein the total FN amount is 50.

The simulation results with infinite threshold for FN ener-
gy consumption reflect the fairness level of command-mode
offloading. When the system is in command-mode, all the
computing capabilities of the FNs are reported to the TN to
achieve the minimized task processing delay, regardless of the
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Ēi,max = 0.5 J (Voluntary)
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Ēi,max = ∞ (Command)

(a) Jain’s fairness index versus the FN amount in the fog cluster.
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(b) Jain’s fairness index versus the radius of the fog cluster.

Fig. 7. Jain’s fairness index under different thresholds for FN energy
consumption.

energy consumptions of the FNs. As a result, the fairness
level of this command-mode offloading is much lower than
that of the voluntary-mode offloading with finite threshold for
FN energy consumption. Besides, a lower threshold leads to a
higher fairness level. It is because that when the threshold
for FN energy consumption is small, the FNs with higher
historical load will report less or zero capability, and more
FNs participate in the offloading services of the TN tasks.

Moreover, the fairness level decreases with the increasing
of the FN amount and the cluster radius as shown in the
simulation results. The reason is that the amount of the FNs
which are far away from the TN increases, and these FNs
can hardly be adopted for the task scheduling. Therefore,
except for the benefit to reducing task processing delay, the
appropriate amount and distribution range of the FNs in the
fog cluster also lead to higher fairness level among the FNs
during the offloading services for TN tasks.
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VI. CONCLUSIONS

In order to cope with the requirement for ultra-low pro-
cessing delay in future 5G and IoT applications, the novel
fog architecture with FNs located across the network has
arisen to support nearby offloading services. In this paper,
we investigated the scheduling of delay-sensitive tasks in the
voluntary-mode fog networks, wherein the FNs voluntarily
contribute their capabilities to the TNs and serves as VNs
according to a distributed capability report ratio. An efficient
DOTS algorithm was proposed to obtain the delay-optimal
task scheduling solution. Numerical results obtained from
extensive simulations confirmed that the DOTS algorithm can
effectively obtain the optimal offloading solution to minimize
the overall task processing delay. Moreover, balanced energy
consumptions and higher fairness level among the FNs were
achieved in the voluntary-mode fog networks based on the
proposed voluntary capability report ratio. Future work is in
progress to consider the incentive and bidding mechanisms in
the voluntary-mode and economy-mode fog networks.

APPENDIX A
PROOF OF PROPOSITION 1

We prove Proposition 1 with contradiction. In other words,
if the condition that d = dT = d1 = d2 = · · · =
dV is not satisfied, we can always achieve d′ < d =
max (dT, d1, d2, · · · , dV ).

Assume there is a offloading solution (L,P), and the
corresponding delays do not satisfy the condition that d =
dT = d1 = d2 = · · · = dV . Then, we can always obtain

a = argmin (dT, d1, d2, · · · , dV ) , (18a)

b = argmax (dT, d1, d2, · · · , dV ) , (18b)

which satisfy lb, la > 0. Because that we previously define
dj = min

li ̸=0
(di), i ∈ V when lj = 0. Obviously, there is da <

db = d. Then, we can always get a small subtask adjustment
parameter ξ > 0, such that

d′a|l′a=la+ξ < db, (19a)

d′b|l′b=lb−ξ < db. (19b)

Thus, the overall task delay d′ with adjusted offloading solu-
tion (L′,P) is lower than d. That is to say, we can always
achieve a lower overall delay by adjusting the subtask sizes if
the condition in Proposition 1 is not satisfied.

The above proves Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

According to the conclusion in Proposition 1, we have

dT = d =

(
l −
∑V
i=1 li

)
ηT

fT
, (20)

li = d

 1

W log2

(
1 + piγiβi

Ii+Wn0

) +
ηi
τifi

−1

, i ∈ V. (21)

Substituting (21) into (20) gives

l

d
=

V∑
i=1

 1

W log2

(
1 + piγiβi

Ii+Wn0

) +
ηi
τifi

−1

+
fT

ηT
. (22)

Denote the right part in (22) as K, then we get

min
P

d ⇔ max
P

l

d
⇔ max

P
K. (23)

Therefore, the minimization of the overall task delay d is
transformed into the maximization of K with respect to P .
The above proves Proposition 2.

APPENDIX C
PROOF OF PROPOSITION 3

The first derivative of K with respect to pi is

∂K

∂pi
=W

[
1 +W

ηi
τifi

log2

(
1+

piγiβi
Ii +Wn0

)]−2

· γiβi
(Ii +Wn0 + piγiβi) ln 2

. (24)

Then, the second derivative of K with respect to pi is

∂2K

∂p2i
=−W

[
γiβi

(Ii +Wn0 + piγiβi) ln 2

]2
·

{
2W

ηi
τifi

[
1 +W

ηi
τifi

log2

(
1+

piγiβi
Ii +Wn0

)]−3

+ ln 2

[
1 +W

ηi
τifi

log2

(
1+

piγiβi
Ii +Wn0

)]−2
}
, (25)

which is strictly less than 0 when pi ≥ 0. Thus, the objective
function K in P2 is convex. The above proves Proposition 3.

APPENDIX D
PROOF OF THEOREM 1

According to the convexity of K, the constrained optimiza-
tion problem P2 can be transformed into an unconstrained
optimization problem as

L(P, α,Ψ,Φ)

=K(P) + α

(
pmax −

V∑
i=1

pi

)
+

V∑
i=1

ψipi +
V∑
i=1

ϕi(pmax − pi),

(26)

where P = {p1, p2, · · · , pV }, Ψ = {ψ1, ψ2, · · · , ψV }, and
Φ = {ϕ1, ϕ2, · · · , ϕV }.

In order to obtain the optimal TN transmission power, the
Karush-Kuhn-Tucker (KKT) conditions [33] can be expressed
as

∂L

∂pi
=
∂K

∂pi
− α+ ψi − ϕi = 0, (27a)

α

(
pmax −

V∑
i=1

pi

)
= 0, (27b)

ψipi = 0, (27c)

ϕi(pmax − pi) = 0, (27d)
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0 ≤ pi ≤ pmax, (27e)

α,ψi, ϕi ≥ 0. (27f)

If pi = 0, then we have ϕi = 0. Thus, we get

∂K

∂pi

∣∣∣
pi=0

− α+ ψi = 0
ψi≥0−−−→ ∂K

∂pi

∣∣∣
pi=0

≤ α. (28)

If pi = pmax, then we have ψi = 0. Thus, we get

∂K

∂pi

∣∣∣
pi=pmax

− α− ϕi = 0
ϕi≥0−−−→ ∂K

∂pi

∣∣∣
pi=pmax

≥ α. (29)

If 0 < pi < pmax, then we have ϕi = 0 and ψi = 0. Thus,
we get

∂K

∂pi

∣∣∣
pi=p̄i

− α = 0 −→ ∂K

∂pi

∣∣∣
pi=p̄i

= α. (30)

In this case, the value of pi is determined by the formula (30).
The value of ∂K

∂pi
is strictly positive according to (24). Thus,

the value of α is positive when 0 ≤ pi < pmax according
to (28) and (30), and thus pmax −

∑V
i=1 pi = 0 when 0 ≤

pi < pmax according to (27b). Besides, when pi = pmax, there
must be another VN, say VN j, to which the TN transmission
power is pj = 0. In this case, the condition that α > 0 and
pmax −

∑V
i=1 pi = 0 are also satisfied.

According to Proposition 1, the subtask delay d∗i = d∗ when
d is minimized. Thus, we have

l∗i = d∗

 1

W log2

(
1 +

p∗i γiβi

Ii+Wn0

) +
ηi
τifi

−1

=
l

K|P∗

 1

W log2

(
1 +

p∗i γiβi

Ii+Wn0

) +
ηi
τifi

−1

. (31)

The above proves Theorem 1.
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