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Abstract

Purpose of Review Many factors influence the health impact of exposure to metalliferous mine dusts and whilst the underpinning
toxicology is pivotal, it is not the only driver of health outcomes following exposure. The purpose of this review is twofold: (i) to
highlight recent advances in our understanding of the hazard posed by metalliferous mine dust and (ii) to broaden an often
narrowly framed health risk perspective to consider the wider aetiology of the potential determinants of disease.

Recent Findings The hazard posed by metalliferous dusts depends not only on their abundance and particle size but other
properties such as chemical composition, solubility, shape, and surface area, which all play a role in the associated health effects.
A better understanding of the mechanisms that lead to toxicity, such as recent advances in our understanding of the role played by
reactive oxygen species (ROS), can help in the development of improved in vitro models to support risk assessments, whilst
biomonitoring studies have the potential to guide risk management decisions for mining communities.

Summary Environmental exposures are complex; complex geochemically and complex geographically. Research linking the
environment to human health is starting to mature, highlighting the subtlety of multiple exposures, mixtures of substances, and
the cumulative legacy effects of life in disrupted and stressed environments. We are evolving more refined biomarkers to identify
these responses, which enhances our appreciation of the burden of effects on society and also directs us to more sophisticated risk
assessment approaches to adequately address evolving regulatory and societal needs.
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Introduction

‘We have been mortgaging the health of future generations to
realise economic and development gains in the present’ [103].

Environmental pollution contributed to an estimated 9 mil-
lion deaths and significant economic losses across the world in
2015 [62]. Indeed, The Lancet Commission on pollution and
health identifies pollution as the largest environmental cause of
disease and premature death [62]. Metalliferous mine dusts, and
associated potentially toxic elements (PTEs) released into the
environment through dust generating mining activities, is one
such environmental pollution related cause of adverse health
effects to humans. Despite occupational improvements within
the mining industry, the release of metalliferous dusts into the
environment remains a human health issue, especially in re-
gions with poorly developed regulatory systems and where
historic mining has left a significant legacy of exposed metal-
liferous mine wastes. The recovery of economically valuable
metals present in historical waste materials also presents new
technological and environmental challenges, whilst informal
practices, such as those adopted in the artisanal mining of gold,
also result in high levels of exposure to metals [14].

We review recent studies on the nature and hazard charac-
terisation of metalliferous mine dusts (e.g. their main sources,
composition and characterisation). Many factors influence the
health effects of metalliferous mining dusts and understanding
the exposure pathways is critical, as is the source, transport
pathway, nature of the exposure (e.g. duration, activity) and
exposure route (i.e. by inhalation, ingestion or dermal/topical
absorption). The amount of any substance taken into the body
that ends up active within the body is also an important con-
sideration in the assessment of risk. The dose taken in by
inhalation, ingestion and touch may not be the same as that
retained within the body as varying amounts can be excreted
quickly by different routes, usually through the liver, kidney
or gastrointestinal tract, but sometimes in sweat, skin cells and
hair loss [13].

Whilst the underpinning toxicology is pivotal, it is not the
only driver of health outcomes following exposure, and we
broaden an often narrowly framed health perspective to con-
sider other potential determinants of disease, such as the role
played by genes, lifestyle choices, and the wider socio-
economic context. Where we make reference to the underly-
ing toxicological data and biological processes that underpin
many of the related health disorders, we do not do so in detail.
Readers are referred to the key public health and medical
literature on which this review has drawn.

Consideration needs to be given to the fact that each loca-
tion, and each population, are different, as are the variety of
exposure scenarios (e.g. occupational exposure,
neighbourhood exposure, population exposure), further com-
plicated by differences in the management of the hazards. The
complex nature of, and exposure to, metalliferous mine dusts
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requires approaches that take this complexity into account if
we are to correctly apportion and mitigate the impacts on
human health. There is a key role here for those working at
the public-environmental health nexus to (i) develop a better
understanding of the common predicators of ill health, (ii) to
identify how to recognise which differences (be they individ-
ual, social, cultural, environmental) need special attention, and
(iii) harness advances in laboratory sciences and technology to
better utilise big data to support these needs. We highlight the
challenges, as well as the opportunity, for new integrated en-
vironmental health tools to support future management.

Source and Environmental Pathways
of Metalliferous Mine Dusts

PTEs frequently associated with mined deposits, or as gangue
minerals in ore deposits, include arsenic (As), cadmium (Cd),
chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), mercury
(Hg), nickel (Ni), uranium (U), and zinc (Zn), (Table 1). Whilst
several of these PTEs (such as Cu and Zn) are essential for life,
this paper only considers toxic or excess exposures. Due to their
high toxicity, As, Cd, Hg, and Pb rank among the top 10 priority
substances that are of public health concern ([12]-2018). Other
priority elements for human health concern, and of particular
relevance when considering exposure to metalliferous mine dust,
include U and the transition metals Co, Cu, Ni and Zn due to
their ability to generate reactive oxygen species (ROS) in biolog-
ical tissues via Fenton-type reactions [25, 48, 63]. The Fenton
reaction refers to the reaction between hydrogen peroxide and
ferrous salts to produce a reactive species capable of oxidising a
wide variety of organic substrates. In addition, we also include
iron (Fe) as Fe-bearing minerals are commonly found in mining
dust and Fe oxides found in dust are potential contributors to
inflammation in the human lung [43]. The common crystalline
and amorphous phases of these PTEs found in ores or/and mine-
related wastes are listed in Table 1. Mining activities provide
multiple pathways for both the generation and distribution of
mineral dusts into the environment. Dusts are released from a
range of mining-related activities such as removal of the over-
burden, extraction and refining operations (e.g. smelter emis-
sions; slag piles and tailings), and other ore-handling operations
[23], all creating large volumes of dust that are readily mobilised
by aeolian (wind-related) processes and can result in atmospheric
transport over large distances [59]. Dust generation also occurs
when transporting wastes, both on haulage roads within, and
around, the mines, but also over longer distances such as along
train lines [61]. Widespread contamination associated with air-
borne emissions from active and legacy mining and smelting
operations is well documented in the literature, reported across
a wide range of sampled media, including attic dust [16, 21];
house dust [75]; atmospheric dust [49¢]; road dust [97¢]; crop/
vegetables [101]; surface and groundwater [94], with mining-
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Table 1 Potentially toxic
elements (PTESs) in metalliferous PTE

Common bearing phases

mine dust and the common crys-
talline and amorphous bearing As
phases

Arsenopyrite (FeAsS) is the main As ore mineral and is
often found in gold ores; scorodite and iron arsenate (Fe;AsO5)

are secondary phases in tailings'; calcium arsenate on fly ash was
found to be associated to the combustion of pyrite enriched coal;
arsenic trioxide in particulate form was found in close proximity
to smelters and roasters.’

Cd The primary ore of cadmim is the zinc mineral sphalerite; other
important Cd-bearing minerals are greenockite (CdS) and hawleyite
(CdS); Fe oxides such as pyrite usually contain important amounts of Cd.>

Co Cobalt is almost always a by- or co-product of mining for other base metals,
chiefly nickel and copper; cobaltiferous iron sulphides include pyrite (FeS,)
and pyrrhotite (Fe,Co),.<S; other Co-bearing sulphides are cobaltite (CoAsS),
erythrite (Co3(AsOy), 8H,0), carrollite Cu(Co,Ni),S,, linnaeite CozS,, pentlandite
(Fe,Ni,Co)sSg and siegenite (Co, Ni);S,

Cr Chromite is by far the most industrially important mineral for the production of
metallic chromium; magnesiochromite (MgCr204) is a minor ore mineral.’

Cu Chalcopyrite (CuFeS,), chalcocite (Cu,S), and bornite (CusFeS,) are important ores;
siderite (FeCO3), cuprite (Cu,0), malachite [Cu,(CO3)(OH),], azurite
(Cu3(CO3),(OH),), are minor copper ores.®

Fe Pyrite (FeS,), haematite (Fe,03), magnetite (Fe;0,), goethite [x-FeO(OH)],
and limonite (FeO(OH)-n(H,O) are important ores; pyrite Fe oxides and Fe-Mn
oxyhydroxides are common hosts of PTEs such as As, Cu and Ni.>’

Hg Cinnabar (HgS) is the main ore mineral; others include elemental mercury,
corderoite (HgzS,Cl,), schwartzite [(HgCuFe);,Sb,S;3], and livingstonite
(Hng4S7)8; coal mining wastes have high Hg contents’; loss of elemental
Hg occurs during amalgamation processing of ore from lode and placer
Au deposits.'°

Ni Pentlandite [(Fe,Ni)oSg.] is the most important nickel sulphide mineral and is
often associated with nickel-containing pyrrhotite and chalcopyrite. Other
nickel-bearing minerals include nickeliferous limonite, nickeliferous goethite,
siegenite, and millerite; Ni-Fe alloys, glass and olivine were found in waste
dusts (slags, fly ash) generated by laterite Ni ore smelting. "’

Pb Galena (PbS) is the main lead ore mineral; anglesite (PbSQy,), cerussite (PbCO3),
coronadite (Pb,MngO¢) and pyromorphite (Pbs(PO,4);Cl) are common
secondary phases.'*"?

U Uraninite (UO,) is the most important ore of uranium; other U-bearing minerals
7n include autunite [Ca(UO,),(POy),-10-12H,0], coffinite [U(SiOy4)1—(OH)4y],
carnotite (K202UO3V20511H20), tyuyamunite (CaO'2U03'V205'11H20),
schoepite [(UO,)s0,(OH);,:12H,0], torbernite [Cu(UO,),(POy4),-8—12H,0],
and uranophane [Ca(UO,),(HSi0,),-5H,0]."
Sphalerite (ZnS) is the main zinc ore mineral; sphalerite (ZnS) is the main zinc

ore mineral; other Zn-bearing minerals include hemimorphite [Zn4Si,O,(OH),.H,0],
smithsonite (ZnCO5), hydrozincite (Zns(CO5)>(OH)g)."

'[41;2[72]; 3 [110]; 4 [50]; > [18]; © [80]; 7 [74+1; ¥ [871; °[61; " [71; ' [38]; '® [111]; "3 [9]; '* Hettiarachchi et al.

2018; 5 [109]

related particulates reported in soils adjacent to mines and across
the towns of mining communities [44, ]. The unregulated infor-
mal recycling of the complex contaminant mixtures arising from
Waste Electrical and Electronic Equipment (WEEE) also releases
metalliferous dusts associated with precious metals and rare earth
elements, mixed with organics and plastics found in such equip-
ment [24].

Wherever mining has taken place then there is a potential
legacy of exposed wastes, the literature attests to multiple on-

going health risks for people and the wider environment asso-
ciated with many abandoned mine sites and un-remediated
tailings. Many legacy sites contain relatively high concentra-
tions of metals and metalloids, often up to several percent by
mass, and the economic value of these metals and their role as
part of a circular economy, are becoming increasingly
recognised [30]. Where former mine sites and waste deposits
are the focus for the recovery of economically valuable
metals, then the industrial activity can be a more complex
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issue (i.e. re-working spoil heaps/lagoons/leachates) []. In ad-
dition, the materials have been weathered and subjected to a
wide range of environmental conditions that have modified
the original ore and gangue materials. In such contexts, the
dusts generated are potentially different in their reactivity and
hazard from the originally mined sources. Parallels can be
drawn with the coal mining industry where changes in specific
dust characteristics have been invoked to explain resurgence
in diseases such as black lung in the Appalachians [10].

PTEs can be transferred from mine dust-impacted soil to
the human body via unintentional ingestion of soil and the
soil-plant-human food chain. Children are at particular risk
of ingestion of contaminated soil due to their frequent hand-
to-mouth activity. Children are also sensitive receptors since
girls are born with all their eggs already in their ovaries: con-
tamination of young girls affects their children and probably
their grandchildren. Evidence also suggests that although
sperm is generated daily after puberty, there is also transmis-
sion to the next generation of some early life exposures
through epigenetic mechanisms, although the evidence is cur-
rently limited to obesity, stress, risk of diabetic death, cardio-
vascular diseases and the like [40e¢]. It is possible that envi-
ronmental metals may be added to known epigenetic toxins
such as endocrine disruptors, but further work is awaited [71].
Furthermore, there is a difference between intergenerational
(or parental) and transgenerational effects. The former include
effects such as the impact of in utero exposure to toxins on the
developing embryo and its germline, whilst the latter refers to
effects found in generations not exposed to the initial expo-
sure, e.g. great-grandchildren [40ee, 83¢].

The relationship between outdoor mining-related metal con-
tamination and the indoor residential environment remains poor-
ly understood. Quantifying indoor concentrations of metals orig-
inating from mine waste is complex; however, house dust is an
important route of exposure, particularly for children. Numerous
studies highlight the increased risks for long-term residents of
communities living close to active, re-activated and abandoned
mine sites around the world (e.g. [115°]).

Characterisation of the Complex Nature
(Hazard) of Metalliferous Dusts

Hazard, in this context, refers to the inherent properties of the
mineral dust that have the potential to cause harm.
Epidemiological and toxicological studies have indicated that
the hazard posed by mineral dusts depends not only on their
abundance and particle size but other properties such as their
chemical composition, solubility, shape, structure and surface
area of the inhaled particles, which all play a role in the asso-
ciated toxic, carcinogenic or other health effects [88e, 89°].
Furthermore, whilst we hypothesise that organs such as the
lungs where already damaged by disease processes will be
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more susceptible to the absorption of metals and other toxins,
to the authors’ knowledge little is known about how existing
disease affects the outcome of exposure to metalliferous dusts.

In relation to dusts, size matters. Whilst most mining oper-
ations generate coarse dust (>2.5 um diameter), high-
temperature processes, such as smelting and coal combustion,
are typically associated with the generation of fine particulates
(£2.5 wm) [31]. This fine fraction can travel long distances
and an understanding of respiratory tract anatomy, physiology
and clearance mechanisms are also important to understand
the exposure and dose. The respiratory tract in humans is
typically split into three regions (after [27¢¢]): (1) the
extrathoracic region, which includes the nasopharynx and air-
ways to the larynx. There is also the potential for the direct
transfer of particulate matter (PM) through the olfactory
(smell) nerves from nose to brain (2) the tracheobronchial
region, which consist of the large upper airways from the
larynx down to before the terminal bronchiole, with the up-
ward mucociliary transports, and (3) the pulmonary region,
defined as the terminal bronchioles and the alveoli.
Following inhalation, the larger inhaled particles become
trapped in the mucus that lines the airways and are transported
(by tracheobronchial cilia) and expectorated or swallowed into
the gastrointestinal pathway. Particles <4 pm are respirable
(i.e. deposit in the alveoli). The lungs act as a continuous
sampler of inhaled PM. Humans are oronasal breathers, and
there is less filtering of PM inhaled through oral breathing
compared to nasal breathing. With greater exertion, more oral
breathing results, and thus ventilation rates and activity pat-
terns need also to be considered in different modelling expo-
sure scenarios.

Whilst a growing body of literature underlines the increas-
ing concern for the impact of dust PM, especially the < PM, 5.
1 and ¢ ; fraction, on human health, to understand the nature of
the hazard posed the mineral dust should be suitably
characterised. Growing acceptance that the physicochemical
nature of the PM influences the deposition, dissolution and
distribution to other parts of the body, and ultimately the toxic
effect, has seen an expansion in approaches to PM character-
isation to explore the chemistry, oxidation states and material
structure [48]. Synchrotron-based X-ray fluorescence and X-
ray absorption spectroscopy (XAS) are increasingly being
used to map the mineralogy, phase composition, elemental
associations, and oxidation states of a range of elements
contained within the PM, whilst the use of sequential chemical
extractions remains a popular tool for solid-phase speciation
(e.g. [93, 110)).

The need to utilise multiple techniques to reveal the com-
plex nature of these dusts, and the complex nature of the
interaction with health, is now widely recognised. The
exposome is one such approach [32¢]: the total exposure of a
person from conception to death and the resulting health im-
pact. Although complex, with needs for identified biomarkers,
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new statistical and analytical approaches, and often based on
large datasets, the exposome can also work with smaller sam-
ples (435 adolescents, 19 metals: [85¢]). Our classification of
determinants of disease is similar to the current classification
of the exposome: internal, specific external, general external
[32+], but focussed on metalliferous dusts and mining (Fig. 1).

A growing body of work highlights examples of in vivo
reactions that can generate an overabundance of reactive oxy-
gen species (ROS), reactive nitrogen species (RNS) and lipid
peroxidation in the body. Reactive molecules are pivotal to
control cellular responses focusing on inflammatory settings
and associated with many pathological conditions such as
chronic inflammation, atherosclerosis, diabetes, inflammatory
bowel disease and autoimmune diseases [86]. ROS are neces-
sary intracellular signalling molecules which regulate a wide
variety of physiology; however, an overabundance of ROS

Decreasing
no. visible to

professionals

DETERMINANTS

DISEASES

DIMENSION

health Dies
Hospitalised

Visits doctor
Symptomatic
Non-Symptomatic; ill effects
Biomarker detectable, no-ill effects
Exposed to causative agents

At risk of exposure

can lead to oxidative stress within the body. Fe-rich particles
may also contribute to increased ROS formation. Iron exhibits
Fe®* and/or Fe** forms in crystalline oxides and inhalation into
the human lung of Fe-containing particles has been associated
with the release of free radicals [67¢]. Magnetite has been re-
ported to be a more effective catalyst for Fenton reactions and
the production of OH radicals than goethite or haematite. The
iron oxidation state of most natural iron oxide minerals such as
goethite and haematite is 3+, whilst magnetite has a combina-
tion of Fe?* and Fe* oxidation states; the reaction rate of H,0,
with Fe?* sites is significantly higher than the rate with Fe**
sites [92]. Oxidative stress can result in a range of negative
outcomes, including DNA damage, chronic inflammation in
the lungs [82] and cardiovascular disease [58e¢].

‘Risk’ is the possibility of sarm arising from a particular
exposure to a substance or substances, under specific

Increasing

No. of
individuals
affected

Fig. 1 Mining-related determinants of disease, associated diseases, and dimension (scale) of the disease burden (the ‘disease pyramid’© is after [96+¢])
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conditions. In assessing risk to humans following exposure to
a contaminant, it is the quantitative pattern of the deposition,
and subsequent bioavailability (uptake), that influences the
dose, and ultimately the toxic effects, rather than the exposure
concentration (intake) per se [27¢¢]. For the inhalation path-
way, we need to understand the behaviour of inhaled particles;
not just the initial dose but how the PM is cleared and
redistributed within the body. Significant research has fo-
cussed on the development of in vitro non-animal testing
and biomonitoring methodologies to provide human-relevant
data for decision support in risk assessments and notable re-
cent approaches are outlined below.

Physiologically-Based In vitro Lung Bioaccessibility
Protocols

In vitro bioaccessibility refers to that portion of the contami-
nant which can be extracted and released during passage
through the human system being represented/modelled and
is thus available for uptake. Several in vitro protocols have
been developed, such as the BARGE UBM [106] and US EPA
glycine method [99] for oral bioaccessibility modelling.
Despite the often complex dissolution kinetics, in vitro oral
bioaccessibility protocols may be used as an indicator of
in vivo bioavailability, with mathematical equations relating
in vitro bioaccessibility to in vivo bioavailability for a range of
soil types, sources and PTEs. Similar in vitro—in vivo valida-
tion for inhalation bioaccessibility protocols are still lacking.
Boisa et al. [22] highlight some of the many problems with
using simulated lung fluids. Nonetheless, the last two decades
have seen a proliferation of experiments using simulated lung
fluids. This research has predominantly focussed on two main
types of fluids: those representative of the neutral extracellular
environment in the interstitium of the lungs (i.e. Gamble’s
Solution (GS) believed to mimic the interstitial conditions of
the lungs; the interstitium is the space between cells, a matrix
of collagen bundles interspersed with fluid), or the more acidic
artificial lysosomal fluid (ALF) which simulates the environ-
ment within the spaces of the pulmonary alveolae where cells
engulf and metabolise particles. This research, whilst predom-
inantly on air pollution (which contains combustion-related
metals and hence of relevance), highlights that particles de-
posited in the lungs that are not readily solubilised by the
epithelial lining fluids (i.e. the fluids covering the lung lining)
will be subject to phagocytosis by the pulmonary alveolar
macrophages. Complexation with biological components in
the lung fluids can also influence dissolution rates [22], and
once dissolved can negatively impact the immune system [36,
100].

Different solubilities and dissolution rates in different body
fluids [44, 57], interactions of complex chemical mixtures
[26¢], and the role of enzymes, mucoproteins and surfactants
are increasingly being investigated [19, 65]. The role of
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mineralogy and soil-phase speciation in the bioaccessibility
and bioavailability of metals in PM is well documented [38].
U-enriched aeolian dusts in the proximity of two U mines in
New Mexico highlights the differential solubility of U min-
erals; uraninite and carnotite are more soluble in the GS com-
pared to the more acidic ALF [49+]. Whilst such extraction
protocols still need in vivo validation, the authors demonstrate
the extracts accord with a geochemical model (PHREEQC).
Acknowledging the potential continuation of metal(loid) dis-
solution once the PM is cleared from the lungs and/or has
passed through the gastrointestinal tract has rarely been ad-
dressed. Kastury et al. [57] recently proposed an inhalation-
ingestion bioaccessibility assay, designed to be biologically
relevant to a human inhalation scenario.

In vitro Inhalation Toxicity Testing Using Cell Cultures

Non-animal models of epithelial barriers (skin, intestinal and
pulmonary context) play a critical role for in vitro to in vivo
extrapolation. Immortalised human adenocarcinoma cell lines
(such as Caco-2 or T84) help to study absorption mechanisms,
as do immortalised cell lines (e.g. BEAS-2B cells) and primary
epithelial cells (e.g. normal human bronchial epithelial cells).
However, as adenocarcinoma cell lines are derived from tu-
mours, which by their nature are less representative of typical
conditions, the intestinal epithelial cells may potentially offer a
more physiologically relevant cell-based approach [42e¢].

The inflammatory stress response (ISR, used as a measure
of particle toxicity) was investigated in human lung epithelial
cells following exposure to a range of metal-sulphide ore min-
erals: the role of Fenton and other heavy metals was highlight-
ed, whilst copper-bearing ore minerals, containing ferrous-
iron, produced the largest ISR [48]. An earlier study highlight-
ed the role of pyrite in coal workers’ pneumoconiosis with
pyrite-free coal producing the same limited ISR as exposure
to inert organic matter [47].

The elevated presence of ROS can lead to oxidative dam-
age of biomolecules, in turn, linked to a range of diseases
including cancer, respiratory, neurodegenerative and digestive
disorders ([58¢, 66]). The body’s stress response to ROS can
also generate excess ROS in the lungs, engendering a vicious
negative cycle. The oxidative potential of PM;, in urban air
samples collected on filters across Lanzhou using plasmid
scission assay (PSA), in tandem with total and water-soluble
metal extraction, showed a negative relationship between
TD,, (toxic dose of particles necessary to damage 20% of
DNA) and all of the metals investigated, with the water-
soluble Cu, Zn, As and Mn exhibiting relatively strong nega-
tive correlations [108]. The inference being that the water-
soluble metals associated with PM; were primarily responsi-
ble for the oxidative potential and plasmid DNA damage. A
better understanding of the mechanisms that lead to toxicity
can help in developing better in vitro models.
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Biomonitoring

Biomonitoring (the measurement of a chemical or its metab-
olites in body tissues and fluids) data can improve our under-
standing of exposure. It can contribute to a multiple lines of
evidence approach and allow a better understanding of how
our bodies interact with the environment. Furthermore, bio-
monitoring studies have the potential to guide risk manage-
ment decisions for all legacy mining communities into the
future. The case for biomonitoring data in improved enforce-
ment of health and safety legislation to protect both workers
and the wider community against the hazards posed by mining
activities is clear [77¢].

Correlations between PTEs in household dust and children’s
hair, in two different environmental settings (mining district; sub-
urban non-mining area), showed significantly higher indoor dust
and hair concentrations of PTEs in the mining district [17]; a
significant exposure-biomarker association was found, particu-
larly for Pb. Socio-economic determinants related to unpaved
roads and the physical environment of the households increased
the exposure to PTEs by promoting dust accumulation indoors.
Furthermore, a child’s behaviour may be a modulating factor in
the exposure to PTEs, as the correlation between Pb in dust and
Pb in hair was stronger for children who played with dirt (soil) in
the mining neighbourhood. Dust particulates adhering to clothing
and shoes can easily be carried by the children into their home
environment [17]. In villages surrounding the Huodehong lead-
zinc mine, women showed significantly (p <0.01) higher hair
contents than men for the same PTEs, probably due to differ-
ences in individual exposure frequencies and exposure character-
istics, metabolism, and physiology [101] (cf. Fig. 1).

Determinants of Disease in Mining
Communities

Mining, like any industry or exposure, has its share of diseases
specifically related to the type of mine, the particular industrial
processes and the workforce connected to each mine. The role
of metalliferous mine dust in the aetiology of these diseases
needs to be seen in relation to a broad view of possible deter-
minants of disease: individual, social, economic and environ-
mental factors which may interact as they impact people’s
health [64]. These determinants operate on scales ranging
from the individual (e.g. sex, age, genetics) to the international
(e.g. policies and regulations). For example, the development
of pneumoconiosis among miners depends on the chemical
composition of dust, fineness of dust, air concentration of
dust, but also length of period of exposure and underlying
health status of the exposed worker [46, 66]. We use three
broad classes of determinants (occupational, environmental,
human and societal) to illustrate the complex interplay of con-
siderations and issues that influence disease (Fig. 1).

Occupationally Related Determinants

The mining industry is known for its highly risky and hazardous
working environment. Occupational hazards relevant to disease
associated with metalliferous mine dusts include the following:

Chemical The unrestricted use of metals can lead to high levels
of exposure to a range of PTEs. For example, the use of ele-
mental mercury in small-scale artisanal gold mining leads to
methyl-mercury pollution of the local environment and inges-
tion through the locally grown diet. Inhalation of elemental
Hg by the children and other workers, often working in
kitchens away from the actual mine, is an issue [14].

Environmental Adverse environmental conditions such as ab-
sence of natural light, fresh air, and high dust volumes con-
tribute to mental stress and ill health as well as diseases spe-
cific to the dust characteristics and metal content.

Social and Managerial Risks Managers’ attitudes to safety and
miners’ roles affect health outcomes [52, 114]. Psychological
stress levels in Australian miners were higher than in non-mine
workers, with alcohol use, work role (as managers), level of
work satisfaction, financial factors and job insecurity contribut-
ing factors. Added to this was a perception of lower workplace
support for people with mental health problems [29e°].

Personal The interaction of psychological stress with exposure
to traffic PM is synergistic [5¢]. It can be expected that mining
dust acts similarly when added to psychological stress. Age
and sex affect health, with children and women showing dif-
ferent vulnerabilities from men due to different biochemical
and physiological characteristics. Miners in regulated industry
are usually adults between school leaving age and retirement,
with men more likely in many countries to be working at the
mine face and women in less physically demanding posts,
each with differing exposures to toxins and other disease de-
terminants. Older miners are likely to have longer exposures
to dust and toxins. In artisanal and small-scale mining, chil-
dren are found working directly in the mines, or more likely in
the recovery processes; for example, exposed to Hg in the
amalgamation process in gold extraction.

Environmental Determinants

Wider Environmental Quality Pollution of water, soil, or air by
PM of the wider inhabited area around a mine can affect the
local food sources and hence diet, with immediate and long-
term effects [1¢].

Living Condition Deprivation is a major determinant of ill health.

Mining wastes, the poor and deprived, and the most vulnerable
members of the community are often found in juxtaposition.

@ Springer
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Exposed communities commonly comprise historically
marginalised ethnic groups living in informal settlements, state,
or Government-supported housing and retirement homes (e.g.
[64]). Living near a mine and spoil or a metal-emitting industry
put people at risk of exposure to PM and associated metals
(‘neighbourhood exposure’) [35]. Elderly people exposed to
mining waste, which is often open to being spread widely by
wind and rain, suffer a disproportionate burden of lung diseases
[78¢]. Family and friends can be exposed (‘bystander exposure’)
to dust brought home on clothes, and develop related diseases
including Pb poisoning or lung cancer.

Human and Societal Determinants

Individual Characteristics and Inheritance (e.g. Genetic)
Gender, age and genetic inheritance contribute to vulnerability
to the effects of exposure to environmental pollutants.
Children’s unique physiology, development and behaviour
can influence the extent of their exposure [13]. Children are
not small adults; they differ from adults in their exposures and
may differ in their susceptibility to hazardous chemicals,
sometimes more, sometimes less. It is unlikely that a set of
genes exist which give an easy molecular signature for toxic-
ity to metals or other mined commodities. Nevertheless, ge-
netic diversity clearly modifies the body’s response to various
exposures, even if the evidence is not detailed. Specific genes
have been associated with coal workers’ pneumoconiosis sus-
ceptibility [66], or protection [46] in a Chinese population,
and decreased lung function in smokers living in the vicinity
of Indian coal mines [34]. However, distinguishing between
genes, epigenetic switches and socio-economic status (“nature
and nurture”) can be difficult and will take much more work:
developing the exposome should help.

Personal and Lifestyle Choice Smoking can increase suscepti-
bility to silicosis in miners [102], whilst nutritional status en-
hances or reduces the absorption of metals following expo-
sure. For example, poor nutrition increases Pb absorption and
toxicity [73]. Employment and housing in or near mines or
places affected by metalliferous dusts may reflect lifestyle
choices or the lack of them, easily compounded by related
deprivation and socio-economic issues.

Health Care The level of emergency medical services infra-
structure and preparedness differs significantly between coun-
tries [37]. Furthermore, non-emergency health care, where
available, is typically focused on treatment, when a more fun-
damental need is prevention.

Social Capital Family and friends and the culture of the home
community can put implicit or explicit pressure on workers to
keep earning despite poor working conditions, and poor health,
thus increasing exposure to dust and toxins, while adding to

@ Springer

stress. In contrast, social mobilisation can drive positive changes
and good social support is health protective [70].

Education Education affects health in the long term, at the indi-
vidual, community and wider society levels, through complex
personal and social interactions [113e¢]. Education can improve
health through a multitude of channels: greater ability to access
information and services, proficiency to navigate bureaucracies,
greater political participation and voice [60¢]. Many miners suffer
a lack of education, which limits their job prospects, pushing
them into artisanal mining and trapping them in poverty [104].

National and International Context In many ways, the global
economy /trade has the biggest impact on health from mining
given its influence on the ‘safety climate’ [37]. Furthermore,
national health and safety regulations may exist, but be poorly
complied with, often due to (global) economics. Mines that
followed the US Mine Safety and Health Administration
(MSHA) guidelines were less likely to report lung disease
[112]. The dynamics of human populations in mining com-
munities also has a role to play, such as the length of time
spent in the affected area, nature of community infrastructure,
i.e. old productive versus new and transient mining activity.

Health Outcomes and Response

[11 health may be visualised as a pyramid (dimension (scale) of
the disease burden, Fig. 1 innermost circle) with decreasing
numbers from those at risk of exposure to those who die. The
number of people dying is easier to ascertain than the number
of those exposed, although apportioning a cause of death to
specific disorders and pathological processes can be tricky [3].
There is increasing evidence of a link between environmental
pollution and preventable diseases, especially in developing
countries. A comprehensive review of published epidemiological
literature investigating environmental chemical exposure in Thai
children concluded that exposure to PTEs (including As, Pb, Cd)
in industrial and mining areas is one of three main types of
chemical exposure, together with pesticides and air pollution.
Major health outcomes included detrimental effects on cognitive
function and cancer risk. Furthermore, the authors pointed out
increasing concern, but little acknowledgment, about the effects
of chronic mining-related exposure to PTEs such as As [91].
Exposure to PM can initiate or enhance disease in humans.
With respect to cancers, then Cr, Ni and As are known carcino-
gens, whilst the evidence is less clear for Pb and Fe (cf. Table 2)
[12, 84¢e, 105]. The consensus on Pb is that given its ubiquitous
occurrence and many different forms it is hard to categorically
evaluate its ability to cause cancer. The IARC [S1ee] list Pb as
‘possibly carcinogenic to humans’ (IARC group 2B), inorganic
Pb compounds as ‘probably carcinogenic to humans’ (IARC
group 2A) and organic Pb compounds as ‘not classifiable as to
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its carcinogenicity to humans’ (IARC group 3), but may be
metabolised to ionic, inorganic lead and so become 2A
(Table 2). Mining, however, can lead to an increased risk of
contracting other diseases: increased pulmonary tuberculosis
has been recorded in underground Cu miners in Zambia [76].
A high prevalence of wheeze (a symptom of asthma) and rhino-
conjunctivitis has been noted among the elderly in communities
located near mine dumps [78¢]. Significantly increased risk of
larynx cancer has been observed for many production and trans-
port professions, including miners [15], possibly related to PM
exposure.

Whilst an epidemiological association has been demon-
strated between mortality and morbidity in lung cancer and
cardiovascular diseases and exposure to PM the actual mech-
anisms of this relationship remain unclear. Chronic obstruc-
tive pulmonary disease (COPD), a slowly progressing disease
characterised by a gradual loss of lung function, causes 4% of
overall global disease burden [41¢¢]. The most important risk
factor is active smoking, but other risk factors are occupational
or environmental (including coal and hard-rock mining), and
socio-economic depravation in childhood [20].

Asthma, an inflammatory respiratory condition, is a major
cause of disability, health care utilisation and reduced quality of
life and accounts for approximately 1% of global overall disease
burden [41°¢]. Inhaled PM induces oxidative stress leading to
inflammatory responses in the airways and bronchial hyper-
reactivity and metal fumes are well-recognised causes of occu-
pational asthma, but the contribution of metal dusts to non-
occupational asthma is less obvious. High blood Pb is correlated
with having asthma in children, but the meaning is unclear [107].
Other diseases linked to metal exposures (with or without air
pollution) include chronic neurological disorders such as
Parkinsonism and Alzheimer’s disease (including Al, Cu, Mn,)
[11¢], renal and liver disorders (Table 2).

This multifactorial landscape generates a complex relation-
ship between mining, metalliferous dusts and human health
(Fig. 1). Differences in health outcomes occur both temporally
and spatially and are overlain by differences in management of
the hazard and in the extent of, and behaviours towards, regu-
latory compliance. Risk assessment and health and safety man-
agement are important elements of most industries, including
mining, and have a significant role to play in reducing inci-
dences of mining-related ill health. Risk management refers to
all activities and procedures undertaken to manage the inherent
risks of that particular industry. Risk management does not
eliminate risk, but supports the identification of appropriate,
and proportionate, strategies and control measures to manage
them. Dust abatement strategies are the primary preventative
measure and improved ventilation, more effective dust extrac-
tion systems, as well as water spraying systems have been
linked to reduced incidences of mining-related diseases [55].
Regulatory limits are also important here, whilst safety

@ Springer

organisations, workers’ unions and senior managers also need
to be active, not passive bystanders [114].

Current risk assessment guidance still principally focuses
on a chemical-by-chemical approach, and have not kept pace
with research into the possible synergistic or antagonistic tox-
icological effects of complex environmental mixtures [2]. A
review of studies on the relationships between exposure to Pb,
As and Cd and neurodevelopmental outcomes in prenatal and
carly childhood identified the synergistic effect of combined
mixtures on health outcomes [95]. There is also a need to build
non-chemical stressors into our risk assessment models.
Parallels can be drawn with air pollution studies where com-
bined exposure to psychosocial stress and particulate air pol-
lution has been shown to be worse than exposure to either
alone [5¢]. However, we acknowledge that there are chemical
and physical differences between metalliferous mine dusts
and traffic sourced PMs and so we need to be cautious about
what can be safely inferred from traffic PM-related research.

Exposure to metalliferous dusts remains a significant envi-
ronmental health concern, especially in many low- and
middle-income countries where dust emitting industries are
often less well regulated [60+]. Whilst occupational exposure
to metalliferous dust has long been recognised as potentially
hazardous to workers health, community-wide interventions
to protect vulnerable communities, including integrating bio-
monitoring and surveillance (e.g. miners’ lung function) into
existing health programs and surveys, need to be promoted
alongside local and national-level environmental control pol-
icies [60°]. Arquette et al. [8] describe a community defined
risk assessment and risk management model, emphasising the
important contribution Native people can bring in terms of
traditional, cultural and ecologic knowledge of their environ-
ment. Semi-qualitative and qualitative research is also impor-
tant for assessing and better targeting individuals’ and at-risk
subgroups risk perceptions and behaviours [45].

Future risk assessment approaches should strive to identify
and integrate the effects of exposure to complex chemical mix-
tures, non-chemical stressors (such as socio-economic and cul-
tural drivers), alongside individual differences (e.g. genetic vari-
ability). We are still a long way from a regulatory environment
that drives the development of risk assessment methods that
consider the breadth of potential stressors. The complex interplay
of advances in scientific and technological capability, with eco-
nomic and political drivers, all play a part, but a fuller commen-
tary on this is beyond the scope of this review.

Conclusions

Research linking environment to human health is starting to
mature, highlighting the subtlety of multiple exposures, mix-
tures of substances and the cumulative legacy effects of life in
disrupted and stressed environments. We are developing more
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refined biomarkers of these responses which enhance our ap-
preciation of the burden of effects on society and also direct us
to more sophisticated investigation of risk assessment process-
es. Yet, the disparity of the global geography of disease burden
remains a challenge. Combating environmental hazards has
remained a major area of concern for the UN Sustainable
Development Goals (SDGs, [98]). Despite ~25% of global
disease burden being related to environmental factors [], iden-
tifying health impacts from exposure to chronic/acute hazards
from dust and understanding the complex relationship remains
challenging. How we utilise and interact with our environment
adds another layer of complexity. Academics could do more to
develop evidence-based solutions to promote relevant preven-
tive activities to issues around the sustainable extraction and use
of mineral resources, working in partnership with government,
industry and communities, at local, national and international
scales [60¢]. The development of a shared understanding of the
research gaps, information access, and the needs of stakeholder/
user communities, together with the enablers and challenges, is
vital to address local to global health and wellbeing challenges
arising from environmental pollution, such as from mining- and
mine-related metalliferous dusts. Research at the environment-
health nexus has traditionally been viewed as too environmen-
tal for funding bodies in the geosciences, yet too environmen-
tally focussed for health organisations and related charitable
funders. We need to tackle this deficit if we are to embrace
the 2030 Agenda for Sustainable Development and achieve
the UN SDG of good health and wellbeing.
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